Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
EF giao nhau BC=P
Vì PC và FN cùng vuông góc với DC nên PC song song với FN
\(\Rightarrow\)∠EMP=∠ENF
Mà tứ giác MFNC có 3 góc vuông nên là hình chữ nhật
\(\Rightarrow\)∠CMN=∠MNF
\(\Rightarrow\)∠EMP=∠MNF
Tới đây thôi nha
a: Xét hình thang ABCD có
M là trung điểm của CD
MN//AD//BC
Do đó: N là trung điểm của AB
Xét tứ giác AMDN có
AN//DM
AN=DM
Do đó: AMDN là hình bình hành
mà \(\widehat{A}=90^0\)
nên AMDN là hình chữ nhật
Key t chụp ở Câu hỏi của Lưu Đức Mạnh - Toán lớp 8 - Học toán với OnlineMath.Còn hình vẽ là t vẽ nha.câu c đang nghĩ~~~
C,Gọi G là giao điểm của AC và BE
=> \(AG\perp BE\) (C là trực tâm tam giác ABE)
Lại có Góc GAB= Góc GBA = 45 độ
=> tam giác ABG vuông cân
Mà A,B cố định
=> G cố định
CMTT câu b => D;F;G thẳng hàng
=> DF luôn đi qua điểm G cố định khi M di động trên AB
Vậy DF luôn đi qua điểm G cố định khi M di động trên AB
M là truung điểm của AB => OM =AB/2 = 4/2 =2
Vậy khi A;B di chuyển AB=4
thì M di chuyển Trên đường tròn (O;2 cm) và thuộc góc xOy
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
a: Xét tứ giác AIKD có
AI//KD
AI=KD
Do đó: AIKD là hình bình hành
mà \(\widehat{IAD}=90^0\)
nên AIKD là hình chữ nhật
b: \(AI=\dfrac{AB}{2}=4\left(cm\right)\)
\(S_{AIKD}=AD\cdot AI=6\cdot4=24\left(cm^2\right)\)
c: Xét tứ giác AICK có
AI//CK
AI=CK
Do đó: AICK là hình bình hành
Suy ra: AI//CK và AI=CK(1)
hay MK//IN
Xét tứ giác IBCK có
IB//KC
IB=KC
Do đó: IBCK là hình bình hành
Suy ra: Hai đường chéo IC và BK cắt nhau tại trung điểm của mỗi đường
hay N là trung điểm chung của IC và BK
Ta có: AIKD là hình chữ nhật
mà M là giao điểm của hai đường chéo AK và ID
nên M là trung điểm chung của AK và ID; AK=ID
=>IM=MK
Xét ΔABK có
I là trung điểm của AB
N là trung điểm của BK
Do đó: IN là đường trung bình
=>IN//AK và IN=AK/2(2)
Xét ΔIDC có
M là trung điểm của ID
K là trung điểm của CD
Do đó: MK là đường trung bình
=>MK=IC/2(3)
Từ (1), (2) và (3) suy ra MK//IN và MK=IN
hay IMKN là hình bình hành
mà IM=MK
nên IMKN là hình thoi
a) Phần thuận:
Vì \(AOBC\)là hình chữ nhật ; M là giao điểm của 2 đường chéo AB và OC
\(\Rightarrow MA=MO\)
Mà \(O;A\)cố định
\(\Rightarrow M\)thuộc đường trung trực của OA.
Vẽ đường trung trực của OA và cắt Ox tại H.
*) Giới hạn: Khi B tiến dần tới O thì M tiến dần tới H.
Nhưng \(B\ne O\)( để tạo thành hình chữ nhật \(AOBC\))
\(\Rightarrow M\ne H\)
Vậy quỹ tích điểm M thuộc tia Ht ( trừ điểm H )
b) Phần đảo :
Lấy M thuộc tia Ht\(\left(M\ne H\right)\)
Tia AM cắt Oy tại B.
Vẽ hình chữ nhật AOBC. Ta phải chứng minh M là giao điểm của 2 đường chéo.
Thật vậy,
Xét tam giác OAB có \(HM//OB\)( Vì cùng vuông góc với Ox )
\(HA=HO\)( vì Ht là đương trung trực )
\(\Rightarrow M\)là trung điểm của AB.
Mà AOBC là hình chữ nhật
\(\Rightarrow M\)là trung điểm của OC.
\(\Rightarrow M\)là giao điểm của 2 đường chéo.
c) Kết luận: Qũy tích điểm M là tia Ht, trừ điểm H ( Ht thuộc đường trung trực của OA )