Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(OC\perp OA\Rightarrow\widehat{AOC}=90^O\)
\(OD\perp OB\Rightarrow\widehat{BOD}=90^O\)
Các tia OC , OD nằm trong \(\widehat{AOB}\)nên :
\(\widehat{AOD}\)\(=\widehat{AOB}\)\(-\widehat{BOD}\)\(=\widehat{AOB}\)\(-90^O\)
\(\widehat{BOC}=\widehat{AOB}-\widehat{AOC}=\widehat{AOB}-90^O\)
\(\Rightarrow\widehat{AOB}=\widehat{BOC}\)
b) Vì \(\widehat{AOC}< \widehat{AOB}\)( góc vuông nhỏ hơn góc tù )
=> OC nằm giữa hai tia OA và OB.
Vì \(\widehat{BOD}< \widehat{AOB}\)( góc vuông nhỏ hơn góc tù )
=> OD nằm giữa hai tia OA và OB
=> OC và OD nằm giữa hai tia OA và OB
=> Phân giác OM của \(\widehat{COD}\)nằm giữa hai tia OA và OB. ( 1)
Lại có : \(\widehat{MOC}=\widehat{MOD}\)
Theo chứng minh trên ta có : \(\widehat{BOC}=\widehat{AOD}\Rightarrow\widehat{MOC}+\widehat{BOC}=\widehat{MOD}+\widehat{AOD}hay\widehat{MCB}=\widehat{MOA}\)( 2 )
Từ (1) và (2) => OM là tia phân giác của \(\widehat{AOB}\)
# Aeri #
Ta có: OC⊥OAOC⊥OA nên ˆAOC=900AOC^=900
OD⊥OBOD⊥OB nên ˆBOD=900BOD^=900 các tia OC, OD ở trong góc AOB nên:
ˆAOD=ˆAOB−ˆBOD=ˆAOB−900AOD^=AOB^−BOD^=AOB^−900
ˆBOC=ˆAOB−ˆAOC=ˆAOB−900BOC^=AOB^−AOC^=AOB^−900
⇒ˆAOD=ˆBOC⇒AOD^=BOC^
b.
Vì ˆAOC<ˆAOBAOC^<AOB^ (góc vuông nhỏ hơn góc tù)
⇒OC⇒OC nằm giữa hai tia OA và OB.
ˆBOD<ˆAOBBOD^<AOB^ (góc vuông nhỏ hơn góc tù)
⇒OD⇒OD nằm giữa hai tia OA và OB
⇒OC⇒OC và OD nằm giữa hai tia OA và OD
⇒⇒ Phân giác OM của góc ˆCODCOD^ nằm giữa hai tia OA và OB (*)
Mặt khác: Do OM là phân giác của góc ˆCODCOD^ nên ˆMOC=ˆMODMOC^=MOD^
Theo chứng minh trên, ta có:
ˆBOC=ˆAOD⇒ˆMOC+ˆBOC=ˆMOD+ˆAODBOC^=AOD^⇒MOC^+BOC^=MOD^+AOD^ hay ˆMCB=ˆMOAMCB^=MOA^ (**)
Từ (*) và (**) ⇒OM⇒OM là tia phân giác góc AOB.
a) Xét : \(\widehat{BOC}+\widehat{DOC}=\widehat{DOB}\)
\(\widehat{AOD}+\widehat{DOC}=\widehat{AOC}\)
Mà \(\widehat{DOC}=\widehat{AOC}\)
Vì góc DOB và góc AOC là hai góc vuông nên
\(\widehat{AOD}=\widehat{BOC}=90^0\)
Ta có: góc AOC= góc BOD (=90độ) <=> góc AOD +góc DOC = góc DOC + góc COB <=> góc AOD = góc BOC
OM là phân giác của góc COD => góc DOM = góc COM
=> góc AOD + góc DOM = góc BOC + góc COM <=> góc AOM = góc BOM
Và vì OM là phân giác COD nên OM nằm giữa OA và OB
=> OM là phân giác góc AOB
a) Vì Oa⊥Ox⇒xOa=90o;Ob⊥Oy⇒yOb=90oOa⊥Ox⇒xOa=90o;Ob⊥Oy⇒yOb=90o
Ta có: xOa + aOy = xOy
=> 90o + aOy = xOy (1)
Lại có: xOb + bOy = xOy
=> xOb + 90o = xOy (2)
Từ (1) và (2) => aOy = xOb
b) Vì Om là phân giác của aOb nên bOm=mOa=aOb2bOm=mOa=aOb2
Lại có: aOy = xOb (theo câu a)
=> aOy + mOa = bOm + xOb
=> mOy = xOm
=> Om là tia phân giác của aOb (đpcm)
a) Ta có:
\(\widehat{aOx}=\widehat{bOx}=\dfrac{\widehat{aOb}}{2}=\dfrac{150^0}{2}=75^0\) ( vì Ox là p.giác của \(\widehat{aOb}\) )
\(\widehat{aOx}+\widehat{aOy}=180^0\) ( kề bù )
\(\widehat{aOy}=\widehat{aOc}+\widehat{cOy}\)
⇒ \(\widehat{aOx}+\widehat{aOc}+\widehat{cOy}=180^0\)
⇒ \(\widehat{cOy}=180^0-\left(\widehat{aOx}+\widehat{aOc}\right)\)
\(=180^0-\left(75^0+90^0\right)\)
\(=180^0-165^0\)
\(=15^0\) (1)
\(\widehat{xOb}+\widehat{bOy}=180^0\) ( kề bù )
\(\widehat{bOy}=\widehat{bOd}+\widehat{dOy}\)
⇒ \(\widehat{xOb}+\widehat{bOd}+\widehat{dOy}=180^0\)
⇒ \(\widehat{dOy}=180^0-\left(\widehat{xOb}+\widehat{bOd}\right)\)
\(=180^0-\left(75^0+90^0\right)\)
\(=180^0-165^0\)
\(=15^0\) (2)
Từ (1) và (2) ⇒ \(\widehat{dOy}=\widehat{cOy}\left(=15^0\right)\)
⇒ Oy là phân giác của \(\widehat{dOc}\)
b) \(\widehat{xOc}=\widehat{aOx}+\widehat{aOc}\)
\(=75^0+90^0\)
\(=165^0\)
\(\widehat{yOb}=\widehat{yOd}+\widehat{dOb}\)
\(=15^0+90^0\)
\(=105^0\)
⇒ \(\widehat{xOC}>\widehat{yOB}\) \(\left(165^0>105^0\right)\)
a: Ta có: \(\widehat{AOM}+\widehat{NOM}=90^0\)
\(\widehat{BON}+\widehat{NOM}=90^0\)
Do đó: \(\widehat{AOM}=\widehat{BON}\)
Ta có hình vẽ:
a) Vì \(Oa\perp Ox\Rightarrow xOa=90^o;Ob\perp Oy\Rightarrow yOb=90^o\)
Ta có: xOa + aOy = xOy
=> 90o + aOy = xOy (1)
Lại có: xOb + bOy = xOy
=> xOb + 90o = xOy (2)
Từ (1) và (2) => aOy = xOb
b) Vì Om là phân giác của aOb nên \(bOm=mOa=\frac{aOb}{2}\)
Lại có: aOy = xOb (theo câu a)
=> aOy + mOa = bOm + xOb
=> mOy = xOm
=> Om là tia phân giác của aOb (đpcm)