Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì OT là tia phân giác của xoy nên xot =yot , i thuộc ot từ i ta kẻ hai đoạn ik và ih .
ih nằm trong góc xot và ih vuông góc với ox.ik nằm trong góc yot và ik vuông góc với oy. Nên ih=ik.
câu 3 mk chịu bn hỏi thầy cô nha! Nhớ k cho mk nha!
a) vì OT là tia phân giác của xoy nên xot =yot ,
i thuộc ot từ i ta kẻ hai đoạn ik và ih .
ih nằm trong góc xot và ih vuông góc với ox.ik nằm trong góc yot và ik vuông góc với oy.
Nên ih=ik.
A)Vì OT là phân giác của góc xoy => O1=O2
-Xét tam giác OAM và tam giác OBM:
O1=O2
OM chung
=> tam giác OAM = tam giác OBM(c.huyền và góc nhọn)
B) vì MA=MB (đ.án câu a)
=>AMB là tam giác cân tại M
C) ko biết :))
Ta có hình vẽ:
a) Vì Ot là phân giác của góc xOy nên \(xOt=yOt=\frac{xOy}{2}\)
Xét Δ AHO và Δ BHO có:
AOH = BOH (cmt)
OH là cạnh chung
AHO = BHO = 90o
Do đó, Δ AHO = Δ BHO (g.c.g) (đpcm)
b) Δ AHO = Δ BHO (câu a)
=> OA = OB (2 cạnh tương ứng)
Gọi K' là giao điểm của AD và BC
Xét Δ AOK' và Δ BOK' có:
OA = OB (cmt)
AOK' = BOK' ( câu a)
OK' là cạnh chung
Do đó, Δ AOK' = Δ BOK' (c.g.c)
=> AK' = BK' (2 cạnh tương ứng); OAK' = OBK' (2 góc tương ứng)
Lại có: OAK' + K'AC = 180o (kề bù) (1)
OBK' + K'BD = 180o (kề bù) (2)
Từ (1) và (2) => K'AC = K'BD
Xét Δ K'AC và Δ K'BD có:
AC = BD (gt)
K'AC = K'BD (cmt)
AK' = BK' (cmt)
Do đó, Δ K'AC = Δ K'BD (c.g.c)
=> K'C = K'D (2 cạnh tương ứng)
Mà AK' = BK' (cmt) => AK' + K'D = BK' + K'C
=> AD = BC (đpcm)
c) Đầu tiên ta đi chứng minh 3 điểm O, H, K' thẳng hàng (bn tự chứng minh)
Δ AOK' = BOK' (câu b)
=> AK'O = BK'O (2 góc tương ứng) (*)
Δ K'AC = Δ K'BD (câu b)
=> AK'C = BK'D (2 góc tương ứng) (**)
Ta có: AK'O + AK'C + CK'K = 180o
BK'O + BK'D + DK'K = 180o
Kết hợp với (*) và (**) => CK'K = DK'K
Δ OK'C và Δ OK'D có:
OK' là cạnh chung
COK' = DOK' (câu a)
OC = OD (vì OA = OB; AC = BD)
Do đó, Δ OK'C = Δ OK'D (c.g.c)
=> K'C = K'D (2 cạnh tương ứng)
Xét Δ CK'K và Δ DK'K có:
CK' = DK' (cmt)
CK'K = DK'K (cmt)
K'K là cạnh chung
Do đó, Δ CK'K = Δ DK'K (c.g.c)
=> CKK' = DKK' (2 góc tương ứng)
Mà CKK' + DKK' = 180o (kề bù) nên CKK' = DKK' = 90o
=> \(KK'\perp CD\)
Mà \(KK'\perp AB\) do \(Ot\perp AB\) nên AB // CD (đpcm)
a: Ta có: ΔOAB cân tại O
mà OI là đường phân giác
nên I là trung điểm của AB và OI là đường cao
b: Xét ΔIHA vuông tại H và ΔIKB vuông tại K có
IA=IB
\(\widehat{A}=\widehat{B}\)
Do đó: ΔIHA=ΔIKB
Suy ra: AH=BK
a) xet tam giac OAH va tam giac OBH : OH=OH ( canh chung ), OA=OB (gt), goc HOA= goc HOB( Ot la tia p/g goc xOy)-> tam giac = nhau (c-g-c)
b) cm tam giac OHB= tam giac AHC (c=g=c) ; OH=HC , BH=AH (tam giac OAH=tam giac OBH), goc OHB= goc CHA( 2 goc doi dinh)
c) C1 : cm tam giac OAB can tai O co OH la phan giac -> OH la duong cao -> OH vuong goc AB hay OC vuong goc AB
C2 : ta co : goc OHB+ goc OHA=180 ( 2 goc ke bu)
goc OHB= goc OHA( tam giac OHA= tam giac OHB )
--> goc OHB+goc OHB=180
-> 2 gpc OHB=180
->goc OHB=180:2=90
-> OH vuong goc AH tai H hay OC vuong goc AB
mk chỉ biết câu a thôi nha!
tự vẽ hình
xét tam giác vuông HIO và tam giác vuông IOK, ta có:
HOI = IOK ( OT là tia phân giác của Ô)
OI : cạnh chung
=> tam giác vuông IOH = IOK ( cạnh huyền góc nhọn)
=> IH = IK( hai cạnh tương ứng)
còn phần b mk chịu nha, sorry bạn nhiều lắm! T_T
a) xét tam giác OAI vaf tam giác OBI CÓ
OA=OB (GT)
AOI = IOB (Ot là phân giác của góc xOy)
OI là cạn chung
Do đó tam giác OAI = tam giác OBI (c,g,c)
suy ra AI= BI ( Hai cạnh tương ứng)
AIO = OIB (hai góc tương ứng)
+ VÌ AI = BI nên I là trung điểm của AB
+ có AIO = OIB mặt khác AIO + OIB= 180 (HAI GÓC KỀ BÙ)
Nên suy ra AIO = OIB = 180/2 = 90
Suy ra OI vuông góc với AB
b) ý b cậu tự làm nhé vì nó dài lắm mình viêt MỎI TAY
GỢI Ý chứng minh cho hai tam giac bằng nhau theo trường hợp g.c.g rồi sau đó suy ra AH = BK
Xét tam giác KOI vuông tại K và tam giác HOI vuông tại H có:
KOI = HOI (OI là tia phân giác của KOH)
OI là cạnh chung
=> Tam giác KOI = Tam giác HOI (cạnh huyền - góc nhọn)
=> OK = OK (2 cạnh tương ứng)
HIO = KIO (2 góc tương ứng)
=> IO là tia phân giác của HIK
hình nè bạn