Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOCB và ΔOAD có
OC/OA=OB/OD
\(\widehat{COB}\) chung
DO đó: ΔOCB\(\sim\)ΔOAD
b: \(\widehat{OCB}=180^0-50^0-30^0=100^0=\widehat{OAD}\)
a: Xet ΔOCB và ΔOAD có
OC/OA=OB/OD
góc O chung
=>ΔOCB đồng dạng với ΔOAD
b: ΔOCB đồng dạng với ΔOAD
=>góc OCB=góc OAD
=>góc IAB=góc ICD
=>góc IBA=góc IDC; góc AIB=góc CID
a: Xet ΔOCB và ΔOAD có
OC/OA=OB/OD
góc O chung
=>ΔOCB đồng dạng với ΔOAD
b: ΔOCB đồng dạng với ΔOAD
=>góc OCB=góc OAD
=>góc IAB=góc ICD
=>góc IBA=góc IDC; góc AIB=góc CID
a) Vì Ot là phân giác xOy
=> xOt = yOt
Xét ∆OAC và ∆OBC ta có :
xOt = yOt
OC chung
OA = OB
=> ∆OAC = ∆OBC ( c.g.c)
=> AC = CB
=> ∆CAB cân tại C
Vì OA = OB
=> ∆OAB cân tại O
Xét ∆ODA và ∆ODB ta có :
OD chung
AO = BO ( ∆OAB cân )
OAD = OBD ( ∆OAB cân )
=> ∆ODA = ∆ODB ( c.g.c)
=> AD = DB (1)
=> ODA = ODB ( tương ứng)
Mà ODA + ODB = 180° ( kề bù)
=> ODA = ODB = \(\frac{180°}{2}\)= 90°(2)
Từ (1) và (2) => OD là trung trực AB
=> ADO = 90°