Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác OAM và tam giác OBM có:
OA = OB (gt)
Góc AOM = góc BOM
OM chung
=> tam giác OAM = tam giác OBM
b, tam giác OAM = tam giác OBM ( câu a )
=> AM = BM
GÓC BMO = GÓC AMO
Mà góc BMO + góc AMO = 180 độ
=> OM vuông góc với AB
c, Từ câu b ta có OM là trung trực của AB
d, Xét tam giác MNB và tam giác MNA có:
MB = MA
góc BMN = góc AMN ( 90 độ)
MN chung
=> tam giác MNB = tam giác MNA
=> NA = NB
Xét tam giác AOM và tam giác BOM có:
AO = BO (gt)
AOM = BOM (OM là tia phân giác của AOB)
OM chung
=> Tam giác AOM = Tam giác BOM (c.g.c)
=> AM = BM (2 cạnh tương ứng)
=> M là trung điểm của AB
=> OM là đường trung tuyến của tam giác OAB cân tại O (OA = OB)
=> OM là đường trung trực của tam giác OAB cân tại O
=> OM _I_ AB
Tam giác NAB có NA vừa là đường cao, vừa là đường trung trực
=> Tam giác NAB cân tại N
=> NA = NB
like mik nha
chúc bạn học tốt!
Ta có hình vẽ:
O x y t A B M N
a/ Xét tam giác OBM và tam giác OAM có:
OM: chung
MOA = MOB (GT)
OA = OB (GT)
=> tam giác OBM = tam giác OAM (c.g.c)
b/ Ta có: tam giác OAM = tam giác OBM
=> AM = BM (2 cạnh tương ứng)
Ta có: tam giác OAM = tam giác OBM
=> góc OMA = góc OMB (2 góc tương ứng)
Mà góc OMA + góc OMB = 1800
=> góc OMA = góc OMB = 1800:2=900
Vậy OM \(\perp\)AB (đpcm)
c/ Vì OM \(\perp\)AB
và AM = BM
=> OM là trung trực của AB (đpcm)
d/ Xét tam giác ONA và tam giác ONB có:
góc NOA = góc NOB (GT)
ON: cạnh chung
OA = OB (GT)
=> tam giác ONA = tam giác ONB (c.g.c)
=> NA = NB (2 cạnh tương ứng)
a) Xét t/g OBM và t/g OAM có:
OB = OA (gt)
BOM = AOM (gt)
OM là cạnh chung
Do đó, t/g OBM = t/g OAM (c.g.c) (đpcm)
b) t/g OBM = t/g OAM (câu a)
=>BM = AM (2 cạnh tương ứng) (1)
OMB = OMA (2 góc tương ứng)
Mà OMB + OMA = 180o ( kề bù)
Nên OMB = OMA = 90o
=> OM _|_ AB (2)
(1) và (2) là đpcm
c) Có: AM = BM (câu b)
Mà OM _|_ AB (câu b) => OM là đường trung trực của AB (đpcm)
d) C/m tương tự câu a ta cũng có: t/g AON = t/g BON (c.g.c)
=> NA = NB (2 cạnh tương ứng) (đpcm)
hình bạn tự vẽ đc ko ( nếu vẽ ko đc gửi tin mik biết nhé )
a) xét tam giác OAM và tam giác OBM có
OM cạnh chung
O1 = O2 ( vì Ot là tia phân giác )
OA = OB ( gt )
=> tam giác OAM = tam giác OBM ( c.g.c )
b) vì tam giác OAM = tam giác OBM
=> AM = BM ( cạnh tương ứng )
=> góc AMO = góc OBM ( góc tương ứng )
=> OM vuông góc với AB
C) xét tam giác ANO và tam giác BNO có
ON cạnh chung
OA = OB ( gt )
O1 = O2 ( Vì Ot là tia phân giác )
=> tam giác ANO = tam giác BNO ( c.g.c )
=> NA = NB ( cạnh tương ứng )
có j ko hiểu hỏi lại nka
t-i-c-k mik nka !!
Xét tam giác AOM và tam giác BOM có:
AO = BO (gt)
AOM = BOM (OM là tia phân giác của AOB)
OM chung
=> Tam giác AOM = Tam giác BOM (c.g.c)
=> AM = BM (2 cạnh tương ứng)
=> M là trung điểm của AB
=> OM là đường trung tuyến của tam giác OAB cân tại O (OA = OB)
=> OM là đường trung trực của tam giác OAB cân tại O
=> OM _I_ AB
Tam giác NAB có NA vừa là đường cao, vừa là đường trung trực
=> Tam giác NAB cân tại N
=> NA = NB
C) nha bạn
Chúc các bạn học giỏi
NHA
a, xét tam giác OAM và tam giác OBM có :
góc AOM = góc BOM (Ot là phân giác )
OA = OB (gt)
OM là cạnh chung
suy ra tam giác OAM = tam giác OBM