K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2016

 

x O y E A B C D 1 2 1 1 1 1 1 2

Giải:
a) Xét \(\Delta OAD,\Delta OCB\) có:

\(OA=OC\left(gt\right)\)

\(\widehat{O}\): góc chung

\(OD=OB\left(gt\right)\)

\(\Rightarrow\Delta OAD=\Delta OCB\left(c-g-c\right)\)

\(\Rightarrow AD=CB\) ( cạnh t/ứng )

\(\Rightarrow\widehat{B_1}=\widehat{D_1}\) ( góc t/ứng )

b) Ta có: OB = OD

OA = OC

\(\Rightarrow OB-OA=OD-OC\)

\(\Rightarrow AB=CD\)

Ta có: \(\widehat{A_1}+\widehat{B_1}+\widehat{E_1}=180^o\)

\(\widehat{C_1}+\widehat{E_2}+\widehat{D_1}=180^o\)

\(\widehat{B_1}=\widehat{D_1}\) ( theo phần a ); \(\widehat{E_1}=\widehat{E_2}\) ( đối đỉnh )

\(\Rightarrow\widehat{A_1}=\widehat{C_1}\)

Xét \(\Delta EAB,\Delta ECD\) có:
\(\widehat{A_1}=\widehat{C_1}\left(cmt\right)\)

AB = CB ( cmt )

\(\widehat{B_1}=\widehat{D_1}\) ( theo phần a )

\(\Rightarrow\Delta EAB=\Delta ECD\left(g-c-g\right)\)

\(\Rightarrow EB=ED\) ( cạnh t/ứng )

c) Xét \(\Delta OBE,\Delta ODE\) có:
\(EB=ED\) ( theo phần b )

\(\widehat{B_1}=\widehat{D_1}\) ( theo phần a )

\(OB=OD\left(gt\right)\)

\(\Rightarrow\Delta OBE=\Delta ODE\left(c-g-c\right)\)

\(\Rightarrow\widehat{O_1}=\widehat{O_2}\)

\(\Rightarrow OE\) là tia phân giác của \(\widehat{xOy}\)

Vậy...

21 tháng 12 2016

hinh bai 43

gtkl bai 43

Giải:

a) ∆OAD và ∆OCB có:

OA= OC(gt)

∠O chung OB = OD (gt)

OAD = OCB (c.g.c) AD = BC

Nên ∆OAD=∆OCB (c.g.c) => AD=BC.

b) Ta có

∠A1 = 1800 – ∠A2

∠C1 = 1800 – ∠C2

∠A2 = ∠C2 do ΔOAD = ΔOCB (c/m trên)

⇒ ∠A1 = ∠C1

Ta có:

OB = OA + AB

OD = OC + CD

mà OB = OD, OA = OC

⇒ AB = CD

Xét ΔEAB = ΔECD có:

∠A1 = ∠C1 (c/m trên)

AB = CD (c/m trên)

∠B1 = ∠D1 (ΔOCB = ΔOAD)

⇒ ΔEAB = ΔECD (g.c.g)

c) Xét ΔOBE và ΔODE có:

OB = OD (GT)

OE chung

AE = CE (ΔAEB = ΔCED)

⇒ΔOBE = ΔODE (c.c.c)

⇒ ∠AOE = ∠COE

⇒ OE là phân giác của góc ∠xOy.


 

29 tháng 1 2021

mình cần câu trả lời gấp sắp toang rồi cô kiểm tra

7 tháng 2 2021

a/ Xét t/g OAD và t/g OBC cos

AO = OB

\(\widehat{xOy}\) : chung

OD = OC

=> t/g OAD = t/g OBC

=> AD = BC

b/ Không rõ đề.

c/ Có 

OC = ODOA = OB

=> AC = BD

Có \(\widehat{OAD}=\widehat{OBE}\) (do t/g OAD = t/g OBC)

=> \(180^o-\widehat{OAD}=180^o-\widehat{OBE}\)

=> \(\widehat{CAD}=\widehat{CBD}\) 

Xét t/g AEC và t/g BED có

\(\widehat{CAD}=\widehat{CBD}\)

AC = BD\(\widehat{OCB}=\widehat{ODA}\)

=> t/g AEC = t/g BED (g.c.g)

=> AE = BE

Xét t/g OAE và t/g OBE có

OA = OB

AE = BEOE : chung

=> t/g OAE = t/g OBE

=> ^xOE = ^yOe

=> OE là pg góc xOy