Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOMA và ΔOMB có
OM chung
MA=MB
OA=OB
Do đó: ΔOMA=ΔOMB
b: Xét ΔMAN và ΔMBO có
MA=MB
\(\widehat{AMN}=\widehat{BMO}\)(hai góc đối đỉnh)
MN=MO
Do đó: ΔMAN=ΔMBO
=>\(\widehat{MAN}=\widehat{MBO}\)
c: Sửa đề:chứng minh K,M,H thẳng hàng
Ta có: \(\widehat{MAN}=\widehat{MBO}\)
mà hai góc này là hai góc ở vị trí so le trong
nên OB//AN
Ta có: ΔMBO=ΔMAN
=>BO=AN(1)
Ta có: K là trung điểm của OB
=>\(OK=KB=\dfrac{OB}{2}\left(2\right)\)
Ta có:H là trung điểm của AN
=>\(HA=HN=\dfrac{AN}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra OK=KB=HA=HN
Xét tứ giác OKNH có
OK//NH
OK=NH
Do đó: OKNH làhình bình hành
=>ON cắt KH tại trung điểm của mỗi đường
mà M là trung điểm của ON
nên M là trung điểm của KH
=>K,M,H thẳng hàng
a) Xét ΔOAHΔOAH và ΔOBHΔOBH ta có:
OA = OB (theo giả thiết)
HA = HB (H là trung điểm AB)
OH chung
⇒ΔOAH=ΔOBH(c−c−c)⇒ΔOAH=ΔOBH(c−c−c)
b) Ta có: ΔOAH=ΔOBHΔOAH=ΔOBH (chứng minh trên)
⇒∠AOH=∠BOH⇒∠AOH=∠BOH ( 2 góc tương ứng bằng nhau)
Hay ∠AOC=∠BOC∠AOC=∠BOC
Xét ΔOACΔOAC và ΔOBCΔOBC ta có:
OA = OB (theo giả thiết)
OC chung
∠AOC=∠BOC∠AOC=∠BOC
⇒ΔOAC=ΔOBC(c−g−c)⇒ΔOAC=ΔOBC(c−g−c)
⇒∠OAC=∠OBC⇒∠OAC=∠OBC(2 góc tương ứng)
Mà ∠OAC∠OAC= 900 nên ∠OBC∠OBC = 900
⇒CB⊥OB⇒CB⊥OB( điều phải chứng minh)
c) Ta có: ∠AOC=∠BOC∠AOC=∠BOC (chứng minh trên) (1)
Xét 2 tam giác vuông MIO và MIH ta có:
MI chung
IO = IH (Vì I là trung điểm của OH)
⇒ΔMIO=ΔMIH⇒ΔMIO=ΔMIH (Cạnh góc vuông – cạnh góc vuông)
⇒∠MOI=∠MHI⇒∠MOI=∠MHI (2 góc tương ứng)
Hay∠AOC=∠MHIHay∠AOC=∠MHI (2)
Từ (1) và (2) ta có: ∠BOC=∠MHI∠BOC=∠MHI (cặp góc ở vị trí so le trong)
⇒MH//OB⇒MH//OB (*)
Lại có:
HK⊥BCOB⊥BC}⇒HK//OBHK⊥BCOB⊥BC}⇒HK//OB (Quan hệ giữa tính vuông góc và tính song song của ba đường thẳng) (**)
Từ (*) và (**) ta có: MH và HK cùng thuộc một đường thẳng song song với OB.
Suy ra M, H, K thẳng hàng (điều phải chứng minh)
a) Xét tam giác AHO và tam giác BHO
có OH chung
HA=HB (GT)
OA=OB (GT)
suy ra tam giác AHO = tam giác BHO (c.c.c) (1)
b) Từ (1) suy ra góc AOC = góc BOC
Xét tam giác AOC và tam giác BOC có
OC chung
góc AOC = góc BOC
OA=OB (GT)
suy ra tam giác AOC = tam giác BOC (c.g.c)
suy ra góc OAC = góc OBC (hai góc tương ứng)
mà góc OAC =900
suy ra góc OBC = 900
suy ra CB vuông góc với OB tại B
1: Xét ΔAOM và ΔBOM có
OA=OB
OM chung
AM=BM
Do đó: ΔOAM=ΔOBM
2: Xét ΔMNA và ΔMOB có
MN=MO
\(\widehat{NMA}=\widehat{OMB}\)(hai góc đối đỉnh)
MA=MB
Do đó: ΔMNA=ΔMOB
3: Ta có: ΔMNA=ΔMOB
=>NA=OB
Ta có: ΔMNA=ΔMOB
=>\(\widehat{MNA}=\widehat{MOB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AN//OB
Ta có: OB=AN
\(OK=KB=\dfrac{OB}{2}\)(K là trung điểm của OB)
\(AH=HN=\dfrac{AN}{2}\)(H là trung điểm của AN)
Do đó: OK=KB=AH=HN
Xét tứ giác OKNH có
OK//NH
OK=NH
Do đó: OKNH là hình bình hành
=>ON cắt KH tại trung điểm của mỗi đường
mà M là trung điểm của ON
nên M là trung điểm của KH
=>K,M,H thẳng hàng