K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

1: Xét ΔAOM và ΔBOM có

OA=OB

OM chung

AM=BM

Do đó: ΔOAM=ΔOBM

2: Xét ΔMNA và ΔMOB có

MN=MO

\(\widehat{NMA}=\widehat{OMB}\)(hai góc đối đỉnh)

MA=MB

Do đó: ΔMNA=ΔMOB

3: Ta có: ΔMNA=ΔMOB

=>NA=OB

Ta có: ΔMNA=ΔMOB

=>\(\widehat{MNA}=\widehat{MOB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AN//OB

Ta có: OB=AN

\(OK=KB=\dfrac{OB}{2}\)(K là trung điểm của OB)

\(AH=HN=\dfrac{AN}{2}\)(H là trung điểm của AN)

Do đó: OK=KB=AH=HN

Xét tứ giác OKNH có

OK//NH

OK=NH

Do đó: OKNH là hình bình hành

=>ON cắt KH tại trung điểm của mỗi đường

mà M là trung điểm của ON

nên M là trung điểm của KH

=>K,M,H thẳng hàng

15 tháng 12 2023

a: Xét ΔOMA và ΔOMB có

OM chung

MA=MB

OA=OB

Do đó: ΔOMA=ΔOMB

b: Xét ΔMAN và ΔMBO có

MA=MB

\(\widehat{AMN}=\widehat{BMO}\)(hai góc đối đỉnh)

MN=MO

Do đó: ΔMAN=ΔMBO

=>\(\widehat{MAN}=\widehat{MBO}\)
c: Sửa đề:chứng minh K,M,H thẳng hàng

Ta có: \(\widehat{MAN}=\widehat{MBO}\)

mà hai góc này là hai góc ở vị trí so le trong

nên OB//AN

Ta có: ΔMBO=ΔMAN

=>BO=AN(1)

Ta có: K là trung điểm của OB

=>\(OK=KB=\dfrac{OB}{2}\left(2\right)\)

Ta có:H là trung điểm của AN

=>\(HA=HN=\dfrac{AN}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra OK=KB=HA=HN

Xét tứ giác OKNH có

OK//NH

OK=NH

Do đó: OKNH làhình bình hành

=>ON cắt KH tại trung điểm của mỗi đường

mà M là trung điểm của ON

nên M là trung điểm của KH

=>K,M,H thẳng hàng

15 tháng 12 2023

giải theo cách giải của lớp 7, dùng tam giác giúp em ạ

19 tháng 2 2016

Bài này , điều quan trọng nhất là bạn hãy vẽ hình ra nhé

19 tháng 2 2016

bài có sai đề ko pn

17 tháng 3 2020

a) Xét ΔOAHΔOAH và ΔOBHΔOBH ta có:

            OA = OB (theo giả thiết)

            HA = HB (H là trung điểm AB)

            OH chung

⇒ΔOAH=ΔOBH(c−c−c)⇒ΔOAH=ΔOBH(c−c−c)

b) Ta có: ΔOAH=ΔOBHΔOAH=ΔOBH (chứng minh trên)

⇒∠AOH=∠BOH⇒∠AOH=∠BOH ( 2 góc tương ứng bằng nhau)

Hay ∠AOC=∠BOC∠AOC=∠BOC

Xét ΔOACΔOAC và ΔOBCΔOBC ta có:

      OA = OB (theo giả thiết)

      OC chung

      ∠AOC=∠BOC∠AOC=∠BOC

⇒ΔOAC=ΔOBC(c−g−c)⇒ΔOAC=ΔOBC(c−g−c)

⇒∠OAC=∠OBC⇒∠OAC=∠OBC(2 góc tương ứng)

Mà ∠OAC∠OAC= 900  nên ∠OBC∠OBC = 900

⇒CB⊥OB⇒CB⊥OB( điều phải chứng minh)

c) Ta có: ∠AOC=∠BOC∠AOC=∠BOC (chứng minh trên)                    (1)

Xét 2 tam giác vuông MIO và MIH ta có:

      MI chung

      IO = IH (Vì I là trung điểm của OH)

⇒ΔMIO=ΔMIH⇒ΔMIO=ΔMIH (Cạnh góc vuông – cạnh góc vuông)

⇒∠MOI=∠MHI⇒∠MOI=∠MHI (2 góc tương ứng)

Hay∠AOC=∠MHIHay∠AOC=∠MHI                        (2)

Từ (1) và (2) ta có: ∠BOC=∠MHI∠BOC=∠MHI (cặp góc ở vị trí so le trong)

⇒MH//OB⇒MH//OB                             (*)

Lại có:

HK⊥BCOB⊥BC}⇒HK//OBHK⊥BCOB⊥BC}⇒HK//OB (Quan hệ giữa tính vuông góc và tính song song của ba đường thẳng) (**)

Từ (*) và (**) ta có: MH và HK cùng thuộc một đường thẳng song song với OB.

Suy ra M, H, K thẳng hàng (điều phải chứng minh)

17 tháng 3 2020

x O y A B H C

a) Xét tam giác AHO và tam giác BHO

có OH chung

HA=HB (GT)

OA=OB (GT)

suy ra tam giác AHO = tam giác BHO (c.c.c) (1)

b) Từ (1) suy ra góc AOC = góc BOC

Xét tam giác AOC và tam giác BOC có 

OC chung

góc AOC = góc BOC

OA=OB (GT)

suy ra tam giác AOC = tam giác BOC  (c.g.c)

suy ra góc OAC = góc OBC (hai góc tương ứng)

mà góc OAC =900

suy ra góc OBC = 900

suy ra CB vuông góc với OB tại B

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

19 tháng 12 2015

C/m MHK = 180o là đc

7 tháng 3 2016

Qua dễ 

7 tháng 3 2016

thông cảm mới hc lp 6 à

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD

a) Chứng minh tam giác OAD = tam giác OCB

b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB

c) Chứng minh rằng OM là tia phân giác của góc xOy

2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC

a) Chứng minh tam giác ABM = tam giác ACM

b) Chứng minh AM vuông góc với BC.

c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB

d) Chứng minh EF = BC

3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B

a) Chứng minh rằng: EA = EC và EB = ED

b) Chứng minh rằng: C, E, B thẳng hàng

c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN

4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng

a) Tam giác DBC = tam giác DAM

b) AM//BC

c) M, A, N thẳng hàng

0