Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: OD = OB + BD
OC=OA+AC
mà OA=OB; AC=BD
=>OD=OC
Xét 2 TG ODA và OCB;ta có:
OA-OB(gt); O:góc chung; OD=OC(cmt)
=>TG ODA= TG OCB(c.g.c)
=>AD=BC(2 cạnh tương ứng)
b. TG ODA=TG OCB=> góc C=góc D(2 góc tương ứng)
=>OAD=OBC(2 góc tương ứng)
Ta có: OAD+EAC=180
OBC+EBD=180
Từ (1) và (2)=> OAD+EAC=OBC+EBD=180
mà OAD=OBC(cmt)=>EAC=EBD
Xét 2 TG EAC và EBD; ta có:
AC=BD(gt); C=D(cmt); EAC=EBD(cmt)
=>TG EAC=TG EBD (g.c.g)
c. Vì TG EAC=TG EBD=> EA=EB(2 cạnh tương ứng)
Xét TG OBE và OAE, ta có:
OA=OB(gt); EA=EB(cmt); OE:cạnh chung
=>TG OBE=TG OAE(c.c.c)
=>BOE=EOA(2 cạnh tương ứng)
mà OE nằm giữa OA và OB=> OE là phân giác của góc xOy
Không pt đúng ko
Câu hỏi của Song Ngư - Toán lớp 7 - Học toán với OnlineMath
a) ∆OAD và ∆OCB có: OA= OC(gt)
ˆAODAOD^=ˆCOBCOB^(=ˆAA^)
OD=OB(gt)
Nên ∆OAD=∆OCB(c.g.c)
suy ra AD=BC.
b) ∆OAD=∆OCB(cmt)
Suy ra: ˆDD^= ˆBB^
ˆA1A1^=ˆC1C1^ => ˆA2A2^=ˆC2C2^
Do đó ∆AOE = ∆OCE(c .c.c)
suy ra: ˆOAEOAE^=ˆCOECOE^
vậy OE là tia phân giác của xOy.
b) ∆AEB= ∆CED(câu b) => EA=EC.
∆OAE và ∆OCE có: OA=OC(gt)
EA=EC(cmt)
OE là cạnh chung.
Nên ∆OAE=∆(OCE)(c .c.c)
suy ra: ˆAOEAOE^=ˆCOECOE^
vậy OE là tia phân giác của góc xOy.
xét tam giác OAD VÀ TAM GIÁC OBC CÓ
OD=OC (GT)
OB=OA(GT)
GÓC O CHUNG
=>TAM GIÁC ODA= TAM GIÁC BOC (CGC)
B,TA CÓ TAM GIÁC OD = TAM GIÁC OBC => GỐC DAO=COB
MÀ GỐC BDI + GOC IDy=180*
GOC IAC+ICx=180*=>GOC IAC= GOC IBD
C,TA CÓ GÓC IAC= GÓC IBD=>AC=BD
XET TAM GIAC IBD VA TAM GIAC IAC CO
GÓC BID= GÓC AIC(ĐỐI ĐỈNH)
BD=AC
GÓC I CHUNG
=>TAM GIÁC IBD=TAM GIC IAC(GCG)
Tham khảo nha.
Câu hỏi của nguyen van duy - Toán lớp 7 - Học toán với OnlineMath
O A B C D M N I
a) Xét \(\Delta\)AOD và \(\Delta\)COB có:
OA = OC ( gt ); ^AOD = ^COB ; OD = OB ( gt )
=> \(\Delta\)AOD = \(\Delta\)COB ( c. g. c) (1)
b) OA = OC ; OB = OD
=> AB = CD
(1) => ^OAD = ^OCD => ^DCB = ^BAD
Xét \(\Delta\)IAB và \(\Delta\)ICD có:
^ABI = ^CDI ( suy ra từ (1) ) ; AB = CD ; ^IAB = ^ICD ( vì ^DCB = ^BAD )
=> \(\Delta\)IAB = \(\Delta\)ICD ( g.c.g) (2)
Xét \(\Delta\)OIB và \(\Delta\)OID có:
IB = ID ( suy ra từ (2) ); OI chung ; OB = OD ( gt )
=> \(\Delta\)OIB = \(\Delta\)OID ( c.c.c)
=> ^IOB = ^IOD => OI là phân giác ^BOD
=> OI là phân giác ^xOy (3)
c ) \(\Delta\)AOM = \(\Delta\)COM ( c.c.c) => ^AOM = ^ COM => OM là phân giác ^AOC => OM là phân giác ^xOy (4)
\(\Delta\)BON = \(\Delta\)DON ( c.c.c) => ^BON= ^DON => ON là phân giác ^BOD => ON là phân giác ^xOy (5)
Từ (3); (4) ; (5) => I; M: N thẳng hàng.