K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(1+cot^2\alpha=\dfrac{1}{sin^2\alpha}\)

=>\(cot^2\alpha=1:\dfrac{1}{9}-1=9-1=8\)

=>\(cot\alpha=2\sqrt{2}\)

=>\(tan\alpha=\dfrac{1}{2\sqrt{2}}=\dfrac{\sqrt{2}}{4}\)

b: \(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)

=>\(1+tan^2\alpha=1:\left(\dfrac{2}{\sqrt{5}}\right)^2=\dfrac{5}{4}\)

=>\(tan^2\alpha=\dfrac{1}{4}\)

=>\(tan\alpha=\dfrac{1}{2}\)

18 tháng 10 2019

1.\(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow\cos^2\alpha=1-\sin^2\alpha=1-\left(\frac{3}{5}\right)^2=1-\frac{9}{25}=\frac{16}{25}\)

\(\Rightarrow\cos\alpha=\frac{4}{5}\)

\(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{4}\)

\(\cot\alpha=\frac{\cos\alpha}{\sin\alpha}=\frac{\frac{4}{5}}{\frac{3}{5}}=\frac{4}{3}\)

2.\(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow\sin^2\alpha=1-\cos^2\alpha=1-\left(0,8\right)^2=1-0,64=0,36\)

\(\Rightarrow\sin\alpha=0,6\)

\(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{0,6}{0,8}=\frac{3}{4}\)

\(\tan\alpha.\cot\alpha=1\Rightarrow\cot\alpha=\frac{1}{\tan\alpha}=\frac{1}{\frac{3}{4}}=\frac{4}{3}\)

28 tháng 5 2016

a/ Có vế trái = \(\left(sin^2\alpha+cos^2\alpha\right)^2=1^2=1\) (= vế phải)

b/ Vế trái = \(tan^2\alpha.\left(1-sin^2\alpha\right)=tan^2\alpha.cos^2\alpha=sin^2\alpha\)(= vế phải)

c/ Vế trái = \(cos^2\alpha.\left(1+tan^2\alpha\right)=cos^2\alpha.\frac{1}{cos^2\alpha}=1\) (= vế phải)

12 tháng 8 2018

a) ta có : \(A=tan1.tan2.tan3...tan89\)

\(=\left(tan1.tan89\right).\left(tan2.tan88\right).\left(tan3.tan87\right)...\left(tan44.tan46\right).tan45\)

\(=\left(tan1.tan\left(90-1\right)\right).\left(tan2.tan\left(90-2\right)\right).\left(tan3.tan\left(90-3\right)\right)...\left(tan44.tan\left(90-44\right)\right).tan45\)

\(=\left(tan1.cot1\right).\left(tan2.cot2\right).\left(tan3.cot3\right)...\left(tan44.cot44\right).tan45\) \(=tan45=1\)

b) ta có \(B=\dfrac{sin\alpha+2cos\alpha}{3sin\alpha-4cos\alpha}=\dfrac{\dfrac{sin\alpha}{cos\alpha}+\dfrac{2cos\alpha}{cos\alpha}}{\dfrac{3sin\alpha}{cos\alpha}-\dfrac{4cos\alpha}{cos\alpha}}\)

\(=\dfrac{tan\alpha+2}{3tan\alpha-4}=\dfrac{\dfrac{1}{2}+2}{\dfrac{3}{2}-4}=-1\)

ta có \(D=\dfrac{2sin^2\alpha-3cos^2\alpha}{4cos^2\alpha-5sin^2\alpha}=\dfrac{\dfrac{2sin^2\alpha}{cos^2\alpha}-\dfrac{3cos^2\alpha}{cos^2\alpha}}{\dfrac{4cos^2\alpha}{cos^2\alpha}-\dfrac{5sin^2\alpha}{cos^2\alpha}}\)

\(=\dfrac{2tan^2\alpha-3}{4-5tan^2\alpha}=\dfrac{2\left(\dfrac{1}{2}\right)^2-3}{4-5\left(\dfrac{1}{2}\right)^2}=\dfrac{-10}{11}\)

3 tháng 7 2017

\(\frac{\cos a-\sin a}{cosa+sina}=\frac{\frac{cosa}{cosa}-\frac{sina}{cosa}}{\frac{cosa}{cosa}+\frac{sina}{cosa}}\)(chia ca tu va mau cho cosa)

                \(=\frac{1-tana}{1+tana}=vt\left(dpcm\right)\)

 \(\Delta\)ABC vg tại A , ad tỉ số lg giác trong tg vg ta có

a,\(\sin^2\alpha+\cos^2\alpha\)=\(\frac{AB^2}{BC^2}\)\(\frac{AC^2}{BC^2}\)\(\frac{BC^2}{BC^2}\)=1

b,\(\frac{\sin\alpha}{\cos\alpha}\)\(\frac{AB}{BC}\)\(\frac{AC}{BC}\)\(\frac{AB}{AC}\)\(\tan\alpha\)

#mã mã#