K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2021

a) sin a < tan a

b) cos a < cot a

 

18 tháng 8 2021

\(a.tan\alpha=\dfrac{sin\alpha}{cos\alpha}< sin\alpha\left(\alpha nhọn\Rightarrow sin\alpha>0,cos\alpha>0\right)\)
\(b.cot\alpha=\dfrac{cos\alpha}{sin\alpha}< cos\alpha\left(\alpha nhọn\Rightarrow sin\alpha>0,cos\alpha>0\right)\)

21 tháng 10 2021

A

21 tháng 10 2021

Chọn A

27 tháng 7 2020

a, Ta có : \(\sin^2\alpha+\cos^2\alpha=1\)

\(\sin^2\alpha=\cos^2\alpha\)

=> \(2\sin^2\alpha=1\)

=> \(\sin\alpha=\frac{1}{\sqrt{2}}\)

=> \(\alpha=45^o\)

b, Ta có : \(\tan\alpha.\cot\alpha=1\)

\(\tan\alpha=\cot\alpha\)

=> \(\tan^2\alpha=1\)

=> \(\tan\alpha=1\)

=. \(\alpha=45^o\)

Vậy ...

27 tháng 8 2021

a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)

\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)

\(=\left(1-sin^2a\right)-sin^2a=1\)

27 tháng 8 2021

b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)

\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2-sin^2a-cos^2a=2-1=1\)

Câu 1: 

Ta có: \(\cos\left(90^0-\alpha\right)=\sin\alpha\)

\(\Leftrightarrow\sin\alpha=1:\sqrt{\dfrac{1^2+2^2}{1}}=1:\sqrt{5}=\dfrac{\sqrt{5}}{5}\)

Câu 2: 

a) \(\cos\alpha=\sqrt{1-\sin^2\alpha}=\sqrt{1-\dfrac{16}{25}}=\dfrac{3}{5}\)

\(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)