\(0^o< \alpha< 90^o.CMR:\)

\(a)\sin\alpha< \tan\a...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

\(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow\sin^2\alpha+\left(\frac{7}{5}-\sin\alpha\right)^2=1\)

\(\Rightarrow25\sin^2\alpha-35\sin\alpha+12=0\)

\(\Rightarrow\left(5\sin\alpha-4\right)\left(5\sin\alpha-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sin\alpha=\frac{4}{5}\\\sin\alpha=\frac{3}{5}\end{cases}}\)

Nếu \(\sin\alpha=\frac{4}{5}\)thì \(\cos\alpha=\frac{3}{5}\Rightarrow\tan\alpha=\frac{4}{3}\)

Nếu \(\sin\alpha=\frac{3}{5}\)thì \(\cos\alpha=\frac{4}{5}\Rightarrow\tan\alpha=\frac{3}{4}\)

Tk cho mk bạn nhá

a, ta có \(\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)

                  \(\frac{1}{3}\)\(\frac{\sin\alpha}{\cos\alpha}\)

                    \(\cos\alpha\)= 3 \(\sin\alpha\)

ta có \(\frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}\)\(\frac{3\sin\alpha+\sin\alpha}{3\sin\alpha-\sin\alpha}\)\(\frac{4\sin\alpha}{2\sin\alpha}\)\(2\)

#mã mã#

AH
Akai Haruma
Giáo viên
27 tháng 8 2020

Lời giải:

Ta có:

$\sin ^2a=1-\cos ^2a=1-(\frac{3}{5})^2=\frac{16}{25}$

$0< a< 90$ nên $\sin a>0$. Do đó $\sin a=\frac{4}{5}$

$\tan a=\frac{\sin a}{\cos a}=\frac{4}{5}: \frac{3}{5}=\frac{4}{3}$

$\cot a=\frac{1}{\tan a}=\frac{3}{4}$

6 tháng 8 2018

ta có : \(A=cot\alpha+\dfrac{sin\alpha}{1+cos\alpha}=\dfrac{cos\alpha}{sin\alpha}+\dfrac{sin\alpha}{1+cos\alpha}\)

\(=\dfrac{cos\alpha\left(1+cos\alpha\right)+sin^2\alpha}{sin\alpha\left(1+cos\alpha\right)}=\dfrac{cos\alpha+cos^2\alpha+sin^2\alpha}{sin\alpha\left(1+cos\alpha\right)}\)

\(=\dfrac{1+cos\alpha}{sin\alpha\left(1+cos\alpha\right)}=\dfrac{1}{sin\alpha}\)