K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

Nhận xét : P > 0

P đạt giá trị nhỏ nhất <=> \(P^2\) đạt giá trị nhỏ nhất.

Ta có : \(P^2=\frac{\left(a^2+b^2+1\right)^2}{\left(a-b\right)^2}=\frac{\left(a^2+b^2\right)^2+2\left(a^2+b^2\right)+1}{\left(a^2+b^2\right)-2ab}\)

\(=\frac{\left(a^2+b^2\right)^2+2\left(a^2+b^2\right)+1}{a^2+b^2-8}\)

Đặt \(t=a^2+b^2,P^2=y\) \(\Rightarrow y=\frac{t^2+2t+1}{t-8}\)

\(\Rightarrow y\left(t-8\right)=t^2+2t+1\Leftrightarrow t^2+t\left(2-y\right)+\left(1+8y\right)=0\)

Để pt có nghiệm thì \(\Delta=\left(2-y\right)^2-4\left(1+8y\right)=y^2-36y\ge0\)

\(\Leftrightarrow y\left(y-36\right)\ge0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}y\ge36\left(\text{nhận}\right)\\y\le0\left(\text{loại}\right)\end{array}\right.\)

Suy ra \(y=P^2\ge36\Rightarrow P\ge6\).

Dấu "=" xảy ra khi \(\frac{\left(t+1\right)^2}{t-8}=36\Leftrightarrow t=17\)

\(\Rightarrow\begin{cases}ab=4\\a^2+b^2=17\end{cases}\) \(\Leftrightarrow\begin{cases}a=4\\b=1\end{cases}\) (vì a > b)

Vậy P đạt giá trị nhỏ nhất bằng 6 khi (a;b) = (4;1)

 

 

12 tháng 8 2016

cảm ưn bạn nhiều nha

18 tháng 3 2017

1)

\(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\ge2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{1+a}\ge1-\dfrac{1}{1+b}-1-\dfrac{1}{1+c}=\dfrac{b}{1+b}+\dfrac{c}{1+c}\\\dfrac{1}{1+b}\ge1-\dfrac{1}{1+a}+1-\dfrac{1}{1+c}=\dfrac{a}{1+a}+\dfrac{c}{1+c}\\\dfrac{1}{1+c}\ge1-\dfrac{1}{1+a}+1-\dfrac{1}{1+b}=\dfrac{a}{1+a}+\dfrac{b}{1+b}\end{matrix}\right.\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{1+a}\ge\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\\\dfrac{1}{1+b}\ge\dfrac{a}{1+a}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{ac}{\left(1+a\right)\left(1+c\right)}}\\\dfrac{1}{1+c}\ge\dfrac{a}{1+a}+\dfrac{b}{1+b}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+b\right)}}\end{matrix}\right.\)

Nhân theo từng vế

\(\Rightarrow\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\sqrt{\dfrac{a^2b^2c^2}{\left(1+a\right)^2\left(1+b\right)^2\left(1+c\right)^2}}\)

\(\Rightarrow\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow1\ge8abc\)

\(\Rightarrow abc\le\dfrac{1}{8}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{2}\)

25 tháng 3 2017

cảm ơn bạn

18 tháng 2 2021

Bạn ơi xem lại cái ở trên nha!

AH
Akai Haruma
Giáo viên
17 tháng 2 2017

Lời giải:

Trước tiên, ta sẽ CM bất đẳng thức sau:\(P\geq \frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)\((\star)\)

Thật vậy: BĐT tương đương với :

\(a^2\left (\frac{1}{b+c}-\frac{1}{a+b} \right )+b^2\left ( \frac{1}{c+a}-\frac{1}{b+c} \right )+c^2\left ( \frac{1}{a+b}-\frac{1}{a+c} \right )\geq 0\)

\(\Leftrightarrow a^2(a^2-c^2)+b^2(b^2-a^2)+c^2(c^2-b^2)\geq 0\)

\(\Leftrightarrow (a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2\geq 0\) (luôn đúng)

BĐT \((\star)\) được chứng minh .

Giờ ta chỉ cần tìm min của \(A=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)

Để ý rằng \(A-\left(\frac{b^2}{a+b}+\frac{c^2}{c+a}+\frac{a^2}{c+a}\right)=\sum \left(\frac{a^2-b^2}{a+b}\right)=a-b+b-c+c-a=0\)

\(\Rightarrow 2A=\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\). Sử dụng Cauchy-Schwarz:

\(2A\geq \frac{(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2}{2(a+b+c)}=\frac{1008}{a+b+c}\)

Sử dụng AM_GM: \(\sqrt{2016}=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\geq \frac{a+b}{\sqrt{2}}+\frac{b+c}{\sqrt{2}}+\frac{c+a}{\sqrt{2}}\)

\(\Leftrightarrow a+b+c\leq 12\sqrt{7}\) suy ra \(A\geq 6\sqrt{7}\) suy ra \(P_{\min}=6\sqrt{7}\)

Dấu bằng xảy ra khi \(a=b=c=4\sqrt{7}\)

19 tháng 2 2017

huhu , em tính giải bài này mà chị đã giải trước em rồi :(

9 tháng 5 2018

đen ta'=m^2-2m+2
đen ta'=(m-1)^2+1
suy ra phương trình luôn có 2 nghiệm phân biệt 
để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
khi và chỉ khi P<0 và S#0
suy ra 2(m-2)<0 và 2m#0
suy ra m<2 và m#0

15 tháng 8 2017

Em không biết làm

15 tháng 8 2017

a. x khac 1

b. 5-2√5 / 5