K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2017

Áp dụng BDT Bunhiacopki, ta có

\(1^2\le\left(x+3y\right)^2\le\left(1^2+3^2\right)\left(X^2+Y^2\right)\)

\(\Rightarrow\)\(X^2+Y^2\)\(\ge\frac{1}{10}\).Dấu bằng xảy ra

                         \(\Leftrightarrow x=3y\)

                          \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{10}\\y=\frac{1}{10}\end{cases}}\)

a) Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\left(\sqrt{x}+1\right)\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

1 tháng 1 2017

có cho x dương ko để xài Cosi

11 tháng 3 2017

Mình nghĩ lớp 9 phải biết cosi rồi.

5 tháng 12 2023

Lỗi hình rồi em!

17 tháng 9 2021

\(M=a^2+ab+b^2-3a-3b+2001\)

\(\Rightarrow2M=2a^2+2ab+2b^2-6a-6b+4002\)

\(=\left[\left(a+b\right)^2-2\left(a+b\right).2+4\right]+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+3996\)

\(=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+3996\ge3996\)

\(\Rightarrow M\ge1998\)

\(minM=1998\Leftrightarrow a=b=1\)

17 tháng 9 2021

thanks

13 tháng 6 2021

\(T=\)\(\dfrac{x^2+x+7}{x-1}=\dfrac{\left(x+2\right)\left(x-1\right)+9}{x-1}=x+2+\dfrac{9}{x-1}\)

\(=\left(x-1+\dfrac{9}{x-1}\right)+3\ge2\sqrt{\dfrac{9}{x-1}.\left(x-1\right)}+3\)\(=\)\(9\)

\(\Leftrightarrow T_{min}=9\Leftrightarrow x-1=\dfrac{9}{x-1}\Leftrightarrow x=4\)

 

16 tháng 8 2023

`\sqrt{x^2 - 2x + 4}`

`=\sqrt{(x-1)^2 + 3}`

Do `\sqrt{(x-1)^2 + 3} >=0`

`(x-1)^{2} >=0`

`=>(x-1)^{2} + 3 >=3AAx`

`=>\sqrt{(x-1)^2 + 3} >= \sqrt{3}AAx`

Dấu "=" xảy ra `<=>x-1=0`

`<=>x=1`

Vậy `min` của biểu thức là `\sqrt{3} <=>x=1`