Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\dfrac{1}{\sqrt{3x+1}}=\dfrac{f'\left(x\right)}{f\left(x\right)}\)
\(\Rightarrow\int\dfrac{1}{\sqrt{3x+1}}dx=\int\dfrac{f'\left(x\right)}{f\left(x\right)}dx\)
\(\Rightarrow\dfrac{1}{3}\int\left(3x+1\right)^{-\dfrac{1}{2}}d\left(3x+1\right)=\int\dfrac{\left[f\left(x\right)\right]}{f\left(x\right)}\)
\(\Rightarrow\dfrac{2}{3}.\sqrt{3x+1}+C=\ln\left|f\left(x\right)\right|=\ln\left|f\left(x\right)\right|\)
\(\Rightarrow f\left(x\right)=e^{\dfrac{2}{3}.\sqrt{3x+1}+C}\)
Mặt khác ta có f(1) = \(e^{\dfrac{4}{3}+C}=1\Rightarrow C=-\dfrac{4}{3}\)
Vậy nên f(x) = \(e^{\dfrac{2}{3}.\sqrt{3x+1}-\dfrac{4}{3}}\)
Từ đó ta tính được f(5) = \(e^{\dfrac{4}{3}}\)
Bài 1:
\(f\left(-x\right)=\left|\left(-x\right)^3+x\right|=\left|-x^3+x\right|=\left|-\left(x^3-x\right)\right|=\left|x^3-x\right|=f\left(x\right)\)
Vậy hàm số chẵn
Bài 2:
\(f\left(4\right)=4-3=1\\ f\left(-1\right)=2.1+1-3=0\\ b,\text{Thay }x=4;y=1\Leftrightarrow4-3=1\left(\text{đúng}\right)\\ \Leftrightarrow A\left(4;1\right)\in\left(C\right)\\ \text{Thay }x=-1;y=-4\Leftrightarrow2\left(-1\right)^2+1-3=-4\left(\text{vô lí}\right)\\ \Leftrightarrow B\left(-1;-4\right)\notin\left(C\right)\)
\(f\left(2\right)=f\left(1+1\right)=f\left(1\right)+f\left(1\right)+2.1.1+1=3\)
\(f\left(3\right)=f\left(2+1\right)=f\left(2\right)+f\left(1\right)+2.2.1+1=8\)
\(f\left(4\right)=f\left(2+2\right)=f\left(2\right)+f\left(2\right)+2.2.2+1=15\)
\(f\left(7\right)=f\left(4+3\right)=f\left(4\right)+f\left(3\right)+2.4.3+1=48\)
a: \(f\left(-2\right)=\left(-2\right)^2+3\cdot\left(-2\right)-1\)
=4-6-1
=-3
\(f\left(-1\right)=\left(-1\right)^2+3\cdot\left(-1\right)-1\)
\(=1-3-1\)
=-3
\(f\left(x\right)+2f\left(\frac{1}{x}\right)=x^2\) (1)
\(\Rightarrow f\left(\frac{1}{x}\right)+2f\left(x\right)=\frac{1}{x^2}\Rightarrow2f\left(\frac{1}{x}\right)+4f\left(x\right)=\frac{2}{x^2}\) (2)
Trừ (2) cho (1): \(3f\left(x\right)=\frac{2}{x^2}-x^2\Rightarrow f\left(x\right)=\frac{2}{3x^2}-\frac{1}{3}x^2\)
\(\Rightarrow f\left(2019\right)=\frac{2}{3.2019^2}-\frac{1}{3}.2019^2\)