\(\frac{x^3}{3x^2-3x+1}\)Tính giá trị của biểu thức sau: 

A= f(

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

mk ko bít làm bn ak?

nếu muốn bn đợi mk 2 năm nữa

123456

22 tháng 3 2016

chtt

nhé 

bn

21 tháng 3 2016

Ta có:\(f\left(x\right)-1=\left(x-1\right)^3\)

\(=>A+\frac{1}{2}=\left(\frac{1}{112}-1\right)^3+\left(\frac{2}{112}-1\right)^3+\left(\frac{3}{112}-1\right)^3+...\left(\frac{111}{112}-1\right)^3\)

\(A+\frac{1}{2}=-\frac{1^3+2^3+3^3+...+111^3}{112^3}=-\frac{\frac{111^2\left(111+1\right)^2}{4}}{112^3}=-\frac{111^2}{4\cdot112}=-\frac{12321}{448}\)

\(A=-\frac{12321}{448}-\frac{1}{2}=-\frac{12545}{448}\)

21 tháng 3 2016

à nhầm :v

13 tháng 9 2018

Đễ dàng chưng minh được

\(f\left(1-x\right)=1-f\left(x\right)\)

\(\Rightarrow f\left(1-x\right)+f\left(x\right)=1\)

\(\Rightarrow A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+\left[f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)\right]+...+\left[f\left(\frac{1005}{2012}\right)+f\left(\frac{1007}{2012}\right)\right]+f\left(\frac{1006}{2012}\right)\)

\(=1005+f\left(\frac{1006}{2012}\right)\)

Làm nôt

15 tháng 10 2016

Ta xét : \(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)

\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{3x^2-3x+1}=\frac{\left(x+1-x\right)\left(x^2+x^2-2x+1+x^2-x\right)}{3x^2-3x+1}=\frac{3x^2-3x+1}{3x^2-3x+1}=1\)

Áp dụng ta có : 

\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+\left[f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)\right]+...+\left[f\left(\frac{1006}{2012}\right)+f\left(\frac{1006}{2012}\right)\right]\)

\(=1+1+...+1\)(Có tất cả 1006 số 1)

\(=1006\)

16 tháng 10 2016

sai rồi bạn ơi

23 tháng 1 2020

Ta thấy: \(f\left(x\right)=\frac{x^3}{1-3x+x^2}\)

\(f\left(1-x\right)=\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+\left(1-x\right)^2}\)\(=\frac{\left(1-x\right)^3}{x^2-3x+1}\)

\(f\left(x\right)+f\left(1-x\right)=\frac{x^3+\left(1-x\right)^3}{x^2-3x+1}\)=1

Do đó: \(f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)=1\)

\(f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)=1\)

....

\(f\left(\frac{1005}{2012}\right)+f\left(\frac{1007}{2012}\right)=1\)

=>A=1+1+1+...+1+\(f\left(\frac{1006}{2012}\right)\)=\(\frac{2009}{2}\)

(1005 số 1)

23 tháng 1 2020

bn ơi cho mình hỏi dòng thứ 2 á tại sao \(\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+\left(1-x\right)^2}=\frac{\left(1-x\right)^3}{x^2-3x+1}\)

24 tháng 10 2020

\(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)

\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3x+3x^2}=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)

Ta có \(f\left(x\right)+f\left(1-x\right)=1\) khi đó

\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+...+\left[f\left(\frac{1005}{2012}\right)+f\left(\frac{1007}{2012}\right)\right]+f\left(\frac{1006}{2012}\right)\)

\(=1+1+...+1+f\left(\frac{1}{2}\right)=1005+\frac{\left(\frac{1}{2}\right)^3}{1-3.\frac{1}{2}+3.\left(\frac{1}{2}\right)^2}=1005+\frac{1}{2}=\frac{2011}{2}\)

24 tháng 10 2020

Ta có: \(F\left(x\right)=\frac{x^3}{1-3x+3x^2}\)

\(\Leftrightarrow F\left(1-x\right)=1-\frac{x^3}{1-3x+3x^2}\)

\(=\frac{1-3x+3x^2-x^3}{1-3x+3x^2}\)

\(=\frac{\left(1-x\right)^3}{1-3x+3x^2}\)

Ta có: \(F\left(x\right)+F\left(1-x\right)\)

\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3x+3x^2}\)

\(=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)

\(\Leftrightarrow F\left(\frac{1}{2012}\right)+F\left(\frac{2011}{2012}\right)=1\)

...

\(F\left(\frac{1005}{2012}\right)+F\left(\frac{1007}{2012}\right)=1\)

Do đó: \(A=F\left(\frac{1}{2012}\right)+F\left(\frac{2}{2012}\right)+...+F\left(\frac{2010}{2012}\right)+F\left(\frac{2011}{2012}\right)\)

\(=\left[F\left(\frac{1}{2012}\right)+F\left(\frac{2011}{2012}\right)\right]+\left[F\left(\frac{2}{2012}\right)+F\left(\frac{2010}{2012}\right)\right]+...+F\left(\frac{1006}{2012}\right)\)

\(=1+1+...+F\left(\frac{1}{2}\right)\)

\(=1005+\left[\left(\frac{1}{2}\right)^3:\left(1-3\cdot\frac{1}{2}+3\cdot\frac{1}{4}\right)\right]\)

\(=1005+\left[\frac{1}{8}:\left(1-\frac{3}{2}+\frac{3}{4}\right)\right]\)

\(=1005+\left(\frac{1}{8}:\frac{1}{4}\right)\)

\(=1005+\frac{1}{2}=\frac{2011}{2}\)