K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2019

Ta có : 

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\) vì \(x^2+y^2=1\)

\(\Rightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Leftrightarrow\frac{x^4.b+y^4.a}{ab}=\frac{\left(x^2+y^2\right)^2}{ab}\)

\(\Leftrightarrow\left(x^4.b+y^4.a\right)\left(a+b\right)=ab\left(x^2+y^2\right)^2\)

\(\Rightarrow x^4ab+x^4b^2+a^2y^4+aby^4\)

\(=ab\left(x^2+y^2\right)\left(x^2+y^2\right)\)

\(\Rightarrow ab\left(x^4+x^2y^2+x^2y^2+y^4\right)\)

\(\Rightarrow abx^4+abx^2y^2+abx^2y^2+abx^2y^2+aby^4\)

\(\Rightarrow b^2x^4+a^2y^4\)

\(=2abx^2y^2\)

\(\Rightarrow\left(bx^2\right)^2+\left(ay^2\right)^2-ax^2.by^2-ax^2-by^2=0\)

\(\Rightarrow\left[\left(bx^2\right)^2-ax^2.by^2\right]+\left[\left(ay^2\right)^2-ax^2.by^2\right]=0\)

\(bx^2\left(bx^2-ay^2\right)+ay^2\left(ay^2-bx^2\right)=0\)

\(bx^2\left(bx^2-ay^2\right)-ay^2\left(bx^2-ay^2\right)\)

\(\left(bx^2-ay^2\right)^2=0\)

\(bx^2-ay^2=0\)

\(bx^2=ay^2\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}\)

Mà \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\Rightarrow x^2.\frac{x^2}{a}+y.\frac{y^2}{b}=\frac{x^2+y^2}{a+b}\)

\(\Rightarrow\frac{x^2}{a}\left(x^2+y^2\right)=\frac{x^2+y^2}{a+b}\)

\(\Rightarrow\frac{x^2}{a}=\frac{1}{a+b}\Rightarrow\frac{y^2}{b}=\frac{x^2}{a}=\frac{1}{a+b}\)

Ta có :

\(\frac{x^{2004}}{a^{1002}}+\frac{y^{2004}}{a^{1002}}=\left(\frac{x^2}{a}\right)^{1002}+\left(\frac{y^2}{b}\right)^{1002}=\frac{1}{\left(a+b\right)^{1002}}+\frac{1}{\left(a+b\right)^{1002}}=\frac{2}{\left(a+b\right)^{1002}}< đpcm>\)

Hok tốt 

P/s : _Làm bừa nên chắc k đúng đâu - - _M bt a hok ngu thek nào r mak (:

26 tháng 2 2019

_E cóa thý a hok ngu âu >: ?

_Với cả giải vợi lak đầy đủ roy hả ?

_Thank nhìu nhìu <<<: 

25 tháng 11 2016

\(\frac{x^4}{a}=\frac{y^4}{b}=\frac{1}{a+b}=\frac{x^4+y^4}{a+b}\Rightarrow x^4+y^4=1.\)

Mà \(x^2+y^2=1\)=>\(x^4+y^4=x^2+y^2=1.\)

Nếu x =0 => y =1 => a =0 vô lí 

Xem lại đề  dc ko ( hay mình làm sai?)

3 tháng 12 2016

đề đúng r bạn

22 tháng 9 2018

\(x^2+y^2=1\)\(\Leftrightarrow\)\(\left(x^2+y^2\right)^2=1\) \(\left(1\right)\)

Thay \(\left(1\right)\) vào \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\) ta được : 

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Leftrightarrow\)\(\frac{x^4b+y^4a}{ab}=\frac{x^4+2x^2y^2+y^4}{a+b}\)

\(\Leftrightarrow\)\(\left(a+b\right)\left(x^4b+y^4a\right)=ab\left(x^4+2x^2y^2+y^4\right)\)

\(\Leftrightarrow\)\(x^4ab+y^4a^2+x^4b^2+y^4ab=x^4ab+2x^2y^2ab+y^4ab\)

\(\Leftrightarrow\)\(x^4b^2+y^4a^2=2x^2y^2ab\)

\(\Leftrightarrow\)\(x^4b^2-2x^2y^2ab+y^4a^2=0\)

\(\Leftrightarrow\)\(\left(x^2b\right)^2-2.x^2b.y^2a+\left(y^2a\right)^2=0\)

\(\Leftrightarrow\)\(\left(x^2b-y^2a\right)=0\)

\(\Leftrightarrow\)\(x^2b-y^2a=0\)

\(\Leftrightarrow\)\(x^2b=y^2a\)

\(\Leftrightarrow\)\(\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\) ( thay \(x^2+y^2=1\) ) 

\(\Leftrightarrow\)\(\left(\frac{x^2}{a}\right)^{1002}=\left(\frac{y^2}{b}\right)^{1002}=\left(\frac{1}{a+b}\right)^{1002}\)

\(\Leftrightarrow\)\(\frac{x^{2004}}{a^{1002}}=\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}\)

Do đó : 

\(\frac{x^{2004}}{a^{1002}}+\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}+\frac{1}{\left(a+b\right)^{1002}}=\frac{2}{\left(a+b\right)^{1002}}\) ( đpcm ) 

Chúc bạn học tốt ~ 

3 tháng 11 2019

Ta có:

\(x^2+y^2=1\Rightarrow\left(x^2+y^2\right)^2=1\)(1)

Thay (1) vào \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)ta có:

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+2x^2y^2+y^4}{a+b}\)

\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^4+2x^2y^2+y^4\right).ab\)

\(\Leftrightarrow x^4ab+x^4b^2+y^4a^2+y^4ab=x^4ab+2x^2y^2ab+y^4ab\)

\(\Leftrightarrow x^4b^2+y^4a^2=2x^2y^2ab\)

\(\Leftrightarrow\left(x^2b\right)^2-2x^2y^2ab+\left(y^2a\right)^2=0\)

\(\Leftrightarrow\left(x^2b-y^2a\right)^2=0\)

\(\Leftrightarrow x^2b-y^2a=0\)

\(\Leftrightarrow x^2b=y^2a\)

\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\left(\frac{x^2}{a}\right)^{1002}=\left(\frac{y^2}{b}\right)^{1002}=\left(\frac{1}{a+b}\right)^{1002}\)

\(\Rightarrow\frac{x^{2004}}{a^{1002}}=\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}\)

\(\Rightarrow\frac{x^{2004}}{a^{1002}}+\frac{y^{2004}}{b^{1002}}=\frac{1}{\left(a+b\right)^{1002}}+\frac{1}{\left(a+b\right)^{1002}}=\frac{2}{\left(a+b\right)^{1002}}\left(đpcm\right)\)

Chúc bạn học tốt!

28 tháng 11 2016

Bài 2:

a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)

Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)

\(\Rightarrow6x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)

\(\Rightarrow4x+12=6x\)

\(\Rightarrow2x=12\)

\(\Rightarrow x=6\)

Vậy x = 6

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)

\(=\frac{14-5}{8}=\frac{9}{8}\)

+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)

+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)

+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)

Vậy ...

c) \(5^x+5^{x+1}+5^{x+2}=3875\)

\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)

\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)

\(\Rightarrow5^x.31=3875\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

Vậy x = 3

28 tháng 11 2016

@@ good :D