Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sinx+cosx=m\Leftrightarrow\left(sinx+cosx\right)^2=m^2\)
\(\Leftrightarrow1+2sinx.cosx=m^2\Rightarrow sinx.cosx=\dfrac{m^2-1}{2}\)
\(A=sin^2x+cos^2x=1\)
\(B=sin^3x+cos^3x=\left(sinx+cosx\right)^3-3sinx.cosx\left(sinx+cosx\right)\)
\(=m^3-\dfrac{3m\left(m^2-1\right)}{2}=\dfrac{2m^3-3m^3+3m}{2}=\dfrac{3m-m^3}{2}\)
\(C=\left(sin^2+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1-2\left(\dfrac{m^2-1}{2}\right)^2\)
\(D=\left(sin^2x\right)^3+\left(cos^2x\right)^3=\left(sin^2x+cos^2x\right)^3-3\left(sin^2x+cos^2x\right)\left(sinx.cosx\right)^2\)
\(=1-3\left(\dfrac{m^2-1}{2}\right)^2\)
\(A=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)
\(B=\frac{cosa}{sina}\left(\frac{1+sin^2a}{cosa}-cosa\right)=\frac{cosa}{sina}\left(\frac{1+sin^2a-cos^2a}{cosa}\right)=\frac{cosa}{sina}.\frac{2sin^2a}{cosa}=2sina\)
\(C=\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cos2x.cosx}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)
\(D=\frac{2sinx.cosx.\left(-tanx\right)}{-tanx.sinx}-2cosx=2cosx-2cosx=0\)
\(E=cos^2x.cot^2x-cot^2x+cos^2x+2cos^2x+2sin^2x\)
\(E=cot^2x\left(cos^2x-1\right)+cos^2x+2=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+2=2\)
\(F=\frac{sin^2x\left(1+tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{sin^2x}{cos^2x}=tan^2x\)
Câu G mẫu số có gì đó sai sai, sao lại là \(2sina-sina?\)
\(H=sin^4\left(\frac{\pi}{2}+a\right)-cos^4\left(\frac{3\pi}{2}-a\right)+1=cos^4a-sin^4a+1\)
\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1=cos^2a-\left(1-cos^2a\right)+1=2cos^2a\)
\(D=\frac{9sin^2x-4cos^2x}{3sin^2x+2cos^2x}=\frac{\frac{9sin^2x}{cos^2x}-\frac{4cos^2x}{cos^2x}}{\frac{3sin^2x}{cos^2x}+\frac{2cos^2x}{cos^2x}}=\frac{9tan^2x-4}{3tan^2x+2}=\frac{77}{29}\)
\(\frac{\left(sin^2x\right)^2}{\frac{1}{3}}+\frac{\left(cos^2x\right)^2}{1}\ge\frac{\left(sin^2x+cos^2x\right)^2}{\frac{1}{3}+1}=\frac{3}{4}\)
Dấu "=" xảy ra khi và chỉ khi \(3sin^2x=cos^2x\)
\(\Rightarrow cos^4x=9sin^4x\Rightarrow3sin^4x+9sin^4x=\frac{3}{4}\)
\(\Rightarrow sin^4x=\frac{1}{16}\Rightarrow cos^4x=\frac{9}{16}\)
\(\Rightarrow S=\frac{1}{16}+\frac{27}{16}=\frac{7}{4}\)
- Xét \(sin\frac{x}{5}=0\Rightarrow C=...\)
- Với \(sin\frac{x}{5}\ne0\)
\(C.sin\frac{x}{5}=sin\frac{x}{5}.cos\frac{x}{5}.cos\frac{2x}{5}cos\frac{4x}{5}cos\frac{8x}{5}\)
\(=\frac{1}{2}sin\frac{2x}{5}cos\frac{2x}{5}cos\frac{4x}{5}cos\frac{8x}{5}\)
\(=\frac{1}{4}sin\frac{4x}{5}cos\frac{4x}{5}cos\frac{8x}{5}=\frac{1}{8}sin\frac{8x}{5}cos\frac{8x}{5}\)
\(=\frac{1}{16}sin\frac{16x}{5}\Rightarrow C=\frac{sin\frac{16x}{5}}{16.sin\frac{x}{5}}\)
\(D=sin\frac{x}{7}+sin\frac{5x}{7}+2sin\frac{3x}{7}\)
\(=2sin\frac{3x}{7}cos\frac{2x}{7}+2sin\frac{3x}{7}\)
\(=2sin\frac{3x}{7}\left(cos\frac{2x}{7}+1\right)=4cos^2\frac{x}{7}.sin\frac{3x}{7}\)
\(A=cos\frac{\pi}{7}cos\frac{3\pi}{7}cos\frac{5\pi}{7}=cos\frac{\pi}{7}cos\frac{4\pi}{7}cos\frac{2\pi}{7}\)
\(\Rightarrow A.sin\frac{\pi}{7}=sin\frac{\pi}{7}.cos\frac{\pi}{7}.cos\frac{2\pi}{7}cos\frac{4\pi}{7}\)
\(=\frac{1}{2}sin\frac{2\pi}{7}cos\frac{2\pi}{7}cos\frac{4\pi}{7}=\frac{1}{4}sin\frac{4\pi}{7}cos\frac{4\pi}{7}\)
\(=\frac{1}{8}sin\frac{8\pi}{7}=\frac{1}{8}sin\left(\pi+\frac{\pi}{7}\right)=-\frac{1}{8}sin\frac{\pi}{7}\)
\(\Rightarrow A=-\frac{1}{8}\)
\(B=sin6.cos48.cos24.cos12\)
\(B.cos6=sin6.cos6.cos12.cos24.cos48\)
\(=\frac{1}{2}sin12.cos12.cos24.cos48=\frac{1}{4}sin24.cos24.cos48\)
\(=\frac{1}{8}sin48.cos48=\frac{1}{16}sin96\)
\(=\frac{1}{16}sin\left(90+6\right)=\frac{1}{16}cos6\Rightarrow B=\frac{1}{16}\)
1) \(sin\left(A+2B+C\right)=sin\left(\pi-B+2B\right)\)
=\(sin\left(\pi+B\right)=sin\left(-B\right)=-sinB\)
2) \(sinBsinC-cosBcosC=-cos\left(B+C\right)\)
\(=-cos\left(\pi-A\right)=cosA\)
4) bạn ơi +2 vào vế phải mới đúng nhé
2+ \(2cosAcosBcosC=\left[cos\left(A+B\right)+cos\left(A-B\right)\right]cosC+2\)
\(=cos\left(\pi-C\right)cosC+cos\left(A-B\right)cos\left(\pi-\left(A+B\right)\right)+2\)
=\(-cos^2C-cos\left(A-B\right)cos\left(A+B\right)+2\)
\(=-cos^2C-\frac{1}{2}\left(cos2A+cos2B\right)+2\)
\(=-cos^2C-\frac{1}{2}\left(2cos^2A-1\right)-\frac{1}{2}\left(2cos^2B-1\right)+2\)
\(=-cos^2C-cos^2A+\frac{1}{2}-cos^2C+\frac{1}{2}+2\)
= sin2C - 1 + sin2A - 1 + sin2C - 1 + 3
= sin2A + sin2B + sin2C
\(sin^4x=\left(sin^2x\right)^2=\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}cos^22x\)
\(=\frac{1}{4}-\frac{1}{2}cos2x+\frac{1}{4}\left(\frac{1}{2}+\frac{1}{2}cos4x\right)=\frac{3}{8}-\frac{1}{2}cos2x+\frac{1}{8}cos4x\)
\(\frac{cos\left(a+b\right)cos\left(a-b\right)}{cos^2a.cos^2b}=\frac{\left(cosa.cosb-sina.sinb\right)\left(cosa.cosb+sina.sinb\right)}{cos^2a.cos^2b}\)
\(=\frac{cos^2a.cos^2b-sin^2a.sin^2b}{cos^2a.cos^2b}=1-\frac{sin^2a.sin^2b}{cos^2a.cos^2b}=1-tan^2a.tan^2b\)
a/
\(\frac{1}{sinx}+\frac{cosx}{sinx}=\frac{1+cosx}{sinx}=\frac{1+2cos^2\frac{x}{2}-1}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{2cos^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{cos\frac{x}{2}}{sin\frac{x}{2}}=cot\frac{x}{2}\)
b/
\(\frac{1-cosx}{sinx}=\frac{1-\left(1-2sin^2\frac{x}{2}\right)}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{2sin^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=tan\frac{x}{2}\)
c/
\(tan\frac{x}{2}\left(\frac{1}{cosx}+1\right)=\left(\frac{1-cosx}{sinx}\right)\left(\frac{1}{cosx}+1\right)=\frac{\left(1-cosx\right)\left(1+cosx\right)}{sinx.cosx}=\frac{1-cos^2x}{sinx.cosx}\)
\(=\frac{sin^2x}{sinx.cosx}=\frac{sinx}{cosx}=tanx\)
d/
\(\frac{sin2a}{2cosa\left(1+cosa\right)}=\frac{2sina.cosa}{2cosa\left(1+2cos^2\frac{a}{2}-1\right)}=\frac{sina}{2cos^2\frac{a}{2}}=\frac{2sin\frac{a}{2}cos\frac{a}{2}}{2cos^2\frac{a}{2}}=tan\frac{a}{2}\)
e/
\(cotx+tan\frac{x}{2}=\frac{cosx}{sin}+\frac{1-cosx}{sinx}=\frac{cosx+1-cosx}{sinx}=\frac{1}{sinx}\)
Các câu c, e đều sử dụng kết quả từ câu b
f/
\(3-4cos2x+cos4x=3-4cos2x+2cos^22x-1\)
\(=2cos^22x-4cos2x+2=2\left(cos^22x-2cos2x+1\right)\)
\(=2\left(cos2x-1\right)^2=2\left(1-2sin^2x-1\right)^2\)
\(=2.\left(-2sin^2x\right)^2=8sin^4x\)
g/
\(\frac{1-cosx}{sinx}=\frac{sinx\left(1-cosx\right)}{sin^2x}=\frac{sinx\left(1-cosx\right)}{1-cos^2x}=\frac{sinx\left(1-cosx\right)}{\left(1-cosx\right)\left(1+cosx\right)}=\frac{sinx}{1+cosx}\)
h/
\(sinx+cosx=\sqrt{2}\left(sinx.\frac{\sqrt{2}}{2}+cosx.\frac{\sqrt{2}}{2}\right)\)
\(=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)
i/
\(sinx-cosx=\sqrt{2}\left(sinx.\frac{\sqrt{2}}{2}-cosx.\frac{\sqrt{2}}{2}\right)\)
\(=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\)
j/
\(cosx-sinx=\sqrt{2}\left(cosx.\frac{\sqrt{2}}{2}-sinx\frac{\sqrt{2}}{2}\right)\)
\(=\sqrt{2}\left(cosx.cos\frac{\pi}{4}-sinx.sin\frac{\pi}{4}\right)=\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)
\(\frac{sin^4x}{a}+\frac{\left(1-sin^2x\right)^2}{b}=\frac{1}{a+b}\)
\(\Leftrightarrow\frac{sin^4x}{a}+\frac{sin^4x-2sin^2x+1}{b}-\frac{1}{a+b}=0\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)sin^4x-\frac{2}{b}sin^2x+\frac{a}{b\left(a+b\right)}=0\)
\(\Leftrightarrow sin^4x-\frac{2a}{a+b}sin^2x+\frac{a^2}{\left(a+b\right)^2}=0\)
\(\Leftrightarrow\left(sin^2x-\frac{a}{a+b}\right)^2=0\)
\(\Rightarrow sin^2x=\frac{a}{a+b}\Rightarrow cos^2x=1-sin^2x=\frac{b}{a+b}\)
Rồi đó giờ khai căn chia trường hợp ra thôi, căn bản đề ko cho phạm vi góc nên chia trường hợp hơi mệt :(
Cũng ko cho a;b dương nữa mà cho bất kì, nếu a;b dương thì từ giả thiết sử dụng BĐT C-S là xong