\(\frac{a}{b}=\frac{c}{d}\). CMR: \(\frac{ab}{cd}=\frac{\left(a+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(\frac{a}{b}=\frac{c}{d}=\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

\(\Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{a+b}{c+d}.\frac{a+b}{c+d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

\(\Rightarrow\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

4 tháng 9 2016

a) áp dụng tính chất của dãy tỉ số bằng nhau ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}\)

Do \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)=> đpcm 

b)  áp dụng tính chất của dãy tỉ số bằng nhau ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\left(\frac{a-c}{b-d}\right)^2\)=> đpcm

28 tháng 8 2019

C1: Đặt a/b=c/d=k => a=bk, c=dk

Ta có (a-b)^2/(c-d)^2=(bk-b)^2/(dk-d)^2 =b^2 . (k-2)^2 / d^2 .(k-1)^2 =b^2/d^2

         ab/cd=bk.b/dk.d =b^2/d^2

=> (a-b)^2/(c-d)^2=ab/cd

1 tháng 9 2016

Ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{\left(a+b^2\right)}{\left(c+d\right)^2}=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)

Vậy \(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

CHÚC BẠN HỌC TỐT

1 tháng 9 2016

cái bước 1 với bước hai có liên quan gì với nhau vậy bạn

28 tháng 8 2019

\(\text{Đặt }\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\left(1\right)\)

\(\text{Thay (1) vào }\frac{ab}{cd}\text{ ta có :}\)

\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\left(2\right)\)

\(\text{Thay (1) vào }\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\text{ ta có :}\)

\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\frac{b^2}{d^2}\left(3\right)\)

\(\text{Từ (2) và (3) }\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

21 tháng 7 2019

\(đat:\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(a,\frac{a^2-b^2}{ab}=\frac{b^2k^2-b^2}{bkb}=\frac{b^2\left(k^2-1\right)}{b^2k}=\frac{k^2-1}{k};\frac{c^2-d^2}{cd}=\frac{d^2\left(k^2-1\right)}{d^2k}=\frac{k^2-1}{k}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\) \(b,\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left[b\left(k+1\right)\right]^2}{b^2k^2+b^2}=\frac{b^2\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{\left(k^2+1\right)};\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left[d\left(k+1\right)\right]^2}{d^2k^2+d^2}=\frac{d^2\left(k+1\right)^2}{d^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{k^2+1}\Rightarrow\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\) \(c,\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1};\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)

8 tháng 10 2019

a) Ta có: \(\frac{a}{b}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

+)\(\frac{2a^2-3b^2}{2c^2-3d^2}=\frac{2.\left(bk\right)^2-3b^2}{2.\left(dk\right)^2-3d^2}=\frac{2.b^2.k^2-3.b^2}{2.d^2.k^2-3.d^2}\)

                                                                \(=\frac{2.b^2.\left(k^2-3\right)}{2.d^2.\left(k^2-3\right)}\)

                                                                  \(=\frac{b^2}{d^2}\)(1)

+)\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2), ta có: \(\frac{2a^2-3b^2}{2c^2-3d^2}=\frac{ab}{cd}\)

Học tốt nha!!!

2 tháng 2 2018

a) ta có: \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\frac{a}{b}=k\Rightarrow a=bk\)

\(\frac{c}{d}=k\Rightarrow c=dk\)

thay vào   \(\frac{a^2-b^2}{ab}=\frac{\left(bk^2\right)-b^2}{bkb}=\frac{bkbk-bb}{bkb}=\frac{bb\times\left(kk-1\right)}{bbk}=\frac{kk-1}{k}\)

                   \(\frac{c^2-d^2}{cd}=\frac{\left(dk^2\right)-d^2}{dkd}=\frac{dkdk-dd}{dkd}=\frac{dd\times\left(kk-1\right)}{ddk}=\frac{kk-1}{k}\)

\(\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\left(=\frac{kk-1}{k}\right)\)

b) ta có \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\frac{a}{b}=k\Rightarrow a=bk\)

\(\Rightarrow\frac{c}{d}=k\Rightarrow c=dk\)

thay vào  \(\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(bk+b\right)^2}{bkbk+bb}=\frac{b\left(k+1\right)\times b\left(k+1\right)}{bb\left(kk+1\right)}=\frac{bb\left(k+1\right)\left(k+1\right)}{bb\left(kk+1\right)}=\frac{\left(k+1\right)\left(k+1\right)}{kk+1}\)

     \(\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left(dk+d\right)^2}{dkdk+dd}=\frac{\left(d\left(k+1\right)\right)^2}{dd\left(kk+1\right)}=\frac{d\left(k+1\right)\times d\left(k+1\right)}{dd\left(kk+1\right)}=\frac{dd\left(k+1\right)\left(k+1\right)}{dd\left(kk+1\right)}=\frac{\left(k+1\right)\left(k+1\right)}{kk+1}\)

        \(\Rightarrow\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\left(=\frac{\left(k+1\right)\left(k+1\right)}{kk+1}\right)\)     

2 tháng 2 2018

(a² + b²) / (c² + d²) = ab/cd 
<=> (a² + b²)cd = ab(c² + d²) 
<=> a²cd + b²cd = abc² + abd² 
<=> a²cd - abc² - abd² + b²cd = 0 
<=> ac(ad - bc) - bd(ad - bc) = 0 
<=> (ac - bd)(ad - bc) = 0 
<=> ac - bd = 0 hoặc ad - bc = 0 
<=> ac = bd hoặc ad = bc 
<=> a/b = d/c hoặc a/b = c/d (đpcm)

1 tháng 10 2017

1, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{c}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)

2, a, Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{ab}{cd}\)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

b, Ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a-b}{c-d}\cdot\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)