K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

b) Ta có \(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

Bài 1: D

Bài 2:

Ta có: \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}\pm1=\frac{c}{d}\pm1\)

\(\Rightarrow\frac{a\pm b}{b}=\frac{c\pm d}{d}\)(đpcm)

8 tháng 9 2018

Ta có : \(b>0,d>0,\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)                                                                         ( 1 )

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(d+b\right)< b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

Vì \(b>0,d>0,\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow\frac{a}{b}< \frac{c}{d}=ad< bc\)

\(\Rightarrow ad+cd< bc+cd\)                                                             ( 2 )

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

22 tháng 4 2017

Ta có : 

\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)

\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1\)\(\Rightarrow A>1\)( 1 )

Lại có :

\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

\(\frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)

\(\frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)

\(\frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)

\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d}{a+b+c+d}+\frac{a+b}{a+b+c+d}+\frac{c+b}{a+b+c+d}+\frac{d+c}{a+b+c+d}=2\)

\(\Rightarrow A< 2\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)A không phải là số tự nhiên ( vì 1 < A < 2 )

22 tháng 4 2017

Ta thấy: 

\(\frac{a+d}{a+b+c+d}>\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b+a}{a+b+c+d}>\frac{b}{b+c+d}>\frac{b}{a+b+c+d} \)

\(\frac{c+b}{a+b+c+d}>\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)

\(\frac{d+c}{a+b+c+d}>\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)

Do đó:

\(\frac{a+d}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{c+d}{a+b+c+d}+\frac{d+c}{a+b+c+d}>A\)

VÀ  \(A>\)\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)

\(\Rightarrow2>A>1\)

\(\Rightarrow\)A không là số tự nhiên với a,b,c,d > 0

Vậy A không là số tự nhiên với a,b,c,d > 0

2 tháng 12 2016

Đặt\(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk ;c=dk\)

\(\Rightarrow\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\left(1\right)\)

     \(\frac{c-d}{d}=\frac{dk-d}{kd}=\frac{d\left(k-1\right)}{kd}=\frac{k-1}{k}\left(2\right)\)

Từ (1) và (2)=> \(\frac{a-b}{a}=\frac{c-d}{c}\)

4 tháng 4 2017

lớp 6 làm thì hơi dài đấy, nếu bạn muốn thì có thể áp dụng các bất đẳng thức của lớp trên cho nhanh

25 tháng 8 2016

Do a;b;c và d là các số tự nhiên >0 => 
a + b + c < a + b + c + d 
a + b + d < a + b + c + d 
a + c + d < a + b + c + d 
b + c + d < a + b + c + d 
=> a/(a + b + c) > a/(a + b + c + d) (1) 
b/(a + b + d) > b/(a + b + c + d) (2) 
c/(b + c + d) > c/(a + b + c + d) (3) 
d/(a + c + d) > d/(a + b + c + d) (4) 
Từ (1);(2);(3) và (4) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > a/(a + b + c + d) + b/(a + b + c + d) + c/(a + b + c + d) + d/(a + b + c + d) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > (a + b + c + d)/(a + b + c + d) 
=> a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) > 1 
=> B > 1 (*) 

Ta có: (a + b + c)(a + d) - a(a + b + c + d) 
= a² + ad + ab + bd + ac + cd - (a² + ab + ac + ad) 
= a² + ad + ab + bd + ac + cd - a² - ab - ac - ad 
= bd + cd 
Do a;b;c và d là số tự nhiên >0
=> bd + cd > 0 
=> (a + b + c)(a + d) - a(a + b + c + d) > 0 
=> (a + b + c)(a + d) > a(a + b + c + d) 
=> (a + d)/(a + b + c + d) > a/(a + b + c) (5) 
Chứng minh tương tự ta được: 
(b + c)/(a + b + c + d) > b/(a + b + d) (6) 
(a + c)/(a + b + c + d) > c/(b + c + d) (7) 
(b + d)/(a + b + c + d) > d/(a + c + d) (8) 
Cộng vế với vế của (5);(6);(7) và (8) ta được: 
(a + d)/(a + b + c + d) + (b + c)/(a + b + c + d) + (a + c)/(a + b + c + d) + (b + d)/(a + b + c + d) > a/(a + b + c) + b/(a + b + d) + c/(b + c + d) + d/(a + c + d) 
=> (a + d + b + c + a + c + b + d)/(a + b + c + d) > B 
=> 2(a + b + c + d)/(a + b + c + d) > B 
=> 2 > B (*)(*) 
Từ (*) và (*)(*) 
=> 1 < B < 2 
=> B không phải là số tự nhiên

25 tháng 8 2016

A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+c+d

A > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d + d/a+b+c+d

A > a+b+c+d/a+b+c+d

A > 1 (1)

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

A = a/a+b+c + b/a+b+d + c/b+c+d + d/a+c+d

A < a+d/a+b+c+d + b+c/a+b+c+d + a+c/a+b+c+d + d+b/a+b+c+d

A < 2.(a+b+c+d)/a+b+c+d

A < 2 (2)

Từ (1) và (2) => 1 < A < 2

=> A không phải số nguyên ( đpcm)