Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=b.k\) ; \(c=d.k\)
Ta có:
\(\frac{a-b}{a+b}=\frac{b.k-b}{b.k+b}=\frac{b.\left(k-1\right)}{b.\left(k+1\right)}=\frac{k-1}{k+1}\left(1\right)\)
\(\frac{c-d}{c+d}=\frac{d.k-d}{d.k+d}=\frac{d.\left(k+1\right)}{d.\left(k-1\right)}=\frac{k-1}{k+1}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra: \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
\(\Rightarrow VT=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
\(\Rightarrow VP=\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)
Từ (1) và (2) =>Đpcm
Ta có : \(\frac{a}{b}=\frac{c}{d}\)
Suy ra : \(\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2017a-b}{2017c-d}\)
Nên : \(\frac{a}{c}=\frac{2017a-b}{2017c-d}\)
Do đó : \(\frac{2017a-b}{a}=\frac{2017c-d}{c}\) (đpcm)
\(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{2017a}{2017c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{2017a}{2017c}=\frac{b}{d}=\frac{2017a-b}{2017c-d}\)
\(\Rightarrow\frac{2017a-b}{2017c-d}=\frac{b}{d}=\frac{a}{c}\)
\(\Rightarrow\frac{2017a-b}{2017c-d}=\frac{a}{c}\)
\(\Rightarrow\frac{2017a-b}{a}=\frac{2017c-d}{c}\)
1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)
-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)
2) ta có \(\frac{a}{b}=\frac{c}{d}\)
đặt a=kb và c=kd
\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)
Vì \(\frac{a}{b+c+d}\)= \(\frac{b}{a+c+d}\)= \(\frac{c}{a+b+d}\)= \(\frac{d}{a+b+c}\)nên
\(\frac{a}{b+c+d}\)+1 = \(\frac{b}{a+c+d}\)+1 = \(\frac{c}{a+b+d}\)+1 = \(\frac{d}{a+b+c}\) +1
hay\(\frac{a+b+c+d}{b+c+d}\) = \(\frac{a+b+c+d}{a+c+d}\)= \(\frac{a+b+c+d}{a+b+d}\)= \(\frac{a+b+c+d}{a+b+c}\)
Mà a + b + c + d \(\ne\)0 \(\Rightarrow\) \(b+c+d=a+c+d=a+b+d=a+b+c\)
\(\Rightarrow\) \(a=b=c=d\)
\(\Rightarrow\) \(M=4\)
Ta có :
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)\(\left(1\right)\)
Ta lại có :
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)\(\Rightarrow\)\(\frac{2a}{2c}=\frac{3b}{3d}=\frac{2a+3b}{2c+3d}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\) suy ra \(\frac{2a+3b}{2c+3d}=\frac{a-b}{c-d}\)
Vậy ...
Ta có: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{a+b+c+d}=1\)
\(\Rightarrow\dfrac{a}{b}=1\Rightarrow a=b\)
\(\dfrac{b}{c}=1\Rightarrow b=c\)
\(\dfrac{c}{d}=1\Rightarrow c=d\)
\(\Rightarrow a=b=c=d\)
\(\Rightarrow a^{20}.b^{17}.c^{2017}=d^{20}.d^{17}.d^{2017}=d^{2054}\)
đpcm
Tham khảo nhé~
Theo đề bài, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{a+b+c+d}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\Rightarrow a=b\\\frac{b}{c}=1\Rightarrow b=c\\\frac{c}{d}=1\Rightarrow c=d\end{cases}}\)
\(\Rightarrow a=b=c=d\)
\(\Rightarrow a^{20}.b^{17}.c^{2017}=d^{20}.d^{17}.d^{2017}=d^{2054}\)
\(\Rightarrowđpcm\)