K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2 :

Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{a+b+c}{abc}=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot1=4\)

( Do \(a+b+c=abc\) )

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\) (đpcm)

P/s : Cho hỏi bài 1 có a,b,c > 0 không ?

Khuyến mãi thêm bài 1 :))

Áp dụng BĐT AM-GM ta có :

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=\frac{2a}{c}\) (1)

Tương tự ta có :

\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)(2), \(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge\frac{2c}{b}\) (3)

Cộng các vế của BĐT (1) (2) và (3) và chia 2 ta có :

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

NV
21 tháng 4 2019

\(\frac{a}{b^2}+\frac{1}{a}\ge2\sqrt{\frac{a}{b^2a}}=\frac{2}{b}\); \(\frac{b}{c^2}+\frac{1}{b}\ge\frac{2}{c}\); \(\frac{c}{a^2}+\frac{1}{c}\ge\frac{2}{a}\)

Cộng lại:

\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\Rightarrow\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Dấu "=" xảy ra khi \(a=b=c\)

6 tháng 7 2016

Trả lời hộ mình đi

16 tháng 8 2020

TA XÉT:     \(\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)      (*)

\(=\frac{a^2}{b+c}+\frac{ab}{c+a}+\frac{ac}{a+b}+\frac{ab}{b+c}+\frac{b^2}{c+a}+\frac{bc}{a+b}+\frac{ca}{b+c}+\frac{cb}{c+a}+\frac{c^2}{a+b}\)

\(=\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\frac{c\left(a+b\right)}{a+b}+\frac{a\left(b+c\right)}{b+c}+\frac{b\left(c+a\right)}{c+a}\)

\(=\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\left(a+b+c\right)\)

TỪ (*) VÀ DO:     \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

=>     \(1\left(a+b+c\right)=\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\left(a+b+c\right)\)

<=>    \(a+b+c=\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\left(a+b+c\right)\)

<=>    \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

=> TA CÓ ĐPCM.

16 tháng 8 2020

Ta có: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{ab}{b+c}+\frac{ac}{a+c}+\frac{b^2}{c+a}+\frac{ab}{c+a}+\frac{bc}{c+a}+\frac{c^2}{a+b}+\frac{ac}{a+b}+\frac{bc}{a+b}=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{a\left(b+c\right)}{b+c}+\frac{b\left(c+a\right)}{c+a}+\frac{c\left(a+b\right)}{a+b}=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)( ĐPCM )

26 tháng 11 2020

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c 

20 tháng 11 2017

Đặt A= abc(bc+a2)(ac+b2)(ab+c2)

Giả sử 1/a + /b + 1/c - (a+b)/(bc+a2) - (b+c)/(ac+b2) - (c+a)/(ab+c2) >=0

<=> (a4b4+b4c4+c4a4-a4b2c2-b4a2c2-c4a2b2)/A >= 0

<=> (2a4b4+2b4c4+2c4a4-2a4b2c2-2b4a2c2-2c4a2b2)/2A >= 0

<=> (a2b2-b2c2)2+(b2c2-c2a2)2+(c2a2-a2b2)2/2A >= 0  (đúng với mọi a,b,c)

20 tháng 11 2017

mk chỉ lm theo cách hiểu của mk thôi!nếu ko đúng thì thông cảm nha!

giả sử: \(a\ge b\ge c>0\)(ko mất tính tổng quát)

\(\Rightarrow a^2\ge ac\)\(\Leftrightarrow a^2+bc\ge ac+bc\)  (vì b>0;c>0)

\(\Leftrightarrow a^2+bc\ge c\left(a+b\right)\)

\(\Leftrightarrow\frac{a+b}{a^2+bc}\le\frac{1}{c}\) (vì a;b;c>0)     (1)

c/m tương tự ta đc: \(\frac{b+c}{ac+b^2}\le\frac{1}{a};\)    (2)

                             \(\frac{c+a}{ab+c^2}\le\frac{1}{b}\)   (3)

từ (1),(2),(3)=>đpcm

23 tháng 4 2018

Do \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{a\left(b+c\right)}{b+c}+\frac{b\left(c+a\right)}{c+a}+\frac{c\left(a+b\right)}{a+b}=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)(đpcm)

Học tốt !!!!

23 tháng 4 2018

1) gt: a/(b+c) + b/(c+a) + c/(a+b) = 1 

A = a²/(b+c) + b²/(c+a) + c²/(a+b) = a[a/(b+c)] + b[b/(c+a)] + c[c/(a+b)] 

= a[a/(b+c) + 1 - 1] + b[b/(c+a) + 1 - 1] + c[c/(a+b) + 1 - 1] 

= a.(a+b+c)/(b+c) -a + b.(a+b+c)/(c+a) - b + c.(a+b+c)/(a+b) - c 

= (a+b+c)[a/(b+c) + b/(c+a) + c/(a+b)] - (a+b+c) 

= (a+b+c) - (a+b+c) = 0 

Bài đó giống như tương tự nha anh

Để sau em làm chứng minh cho

Em mơi học lớp 5 nên anh thông cảm

5 tháng 1 2019

Có \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=a+b+c\)

\(\Rightarrow\frac{a^2+a\left(b+c\right)}{b+c}+\frac{b^2+b\left(a+c\right)}{a+c}+\frac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+a+\frac{b^2}{a+c}+b+\frac{c^2}{a+b}+c=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=a+b+c-a-b-c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\left(đpcm\right)\)

5 tháng 1 2019

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{ab}{c+a}+\frac{ac}{a+b}+\frac{ac}{b+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{c+a}=a+b+c\)

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{c\left(a+b\right)}{a+b}+\frac{a\left(b+c\right)}{b+c}+\frac{b\left(c+a\right)}{a+c}=a+b+c\)

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)          

                                           đpcm

30 tháng 11 2019

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{ab}{c+a}+\frac{ac}{a+b}+\frac{ab}{b+c}+\frac{b^2}{c+a}+\frac{bc}{a+b}\)

\(+\frac{ca}{b+c}+\frac{bc}{c+a}+\frac{c^2}{a+b}=a+b+c\)

\(\Rightarrow\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\frac{c\left(a+b\right)}{a+b}+\frac{a\left(b+c\right)}{b+c}\)

\(+\frac{b\left(c+a\right)}{c+a}=a+b+c\)

\(\Rightarrow\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)+\left(a+b+c\right)=a+b+c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\left(đpcm\right)\)

NV
27 tháng 4 2019

1.

\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)

\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

Dấu "=" khi \(a=b=c\)

2.

\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)

Dấu "=" khi \(a=b=c=d\)

Y
27 tháng 4 2019

Thục Trinh, tran nguyen bao quan, Phùng Tuệ Minh, Ribi Nkok Ngok, Lê Nguyễn Ngọc Nhi, Tạ Thị Diễm Quỳnh,

Nguyễn Huy Thắng, ?Amanda?, saint suppapong udomkaewkanjana

Help me!