K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
30 tháng 10 2016
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=\frac{3b}{3b'}=\frac{2c}{2c'}=\frac{a-3b+2c}{a'-3b'+2c'}\) mà\(\frac{a}{a'}=4\Rightarrow\frac{a-3b+2c}{a'-3b'+2c'}\)
12 tháng 8 2016
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=\frac{a+b+c}{a'+b'+c'}=4\)
17 tháng 7 2016
a,Do a/a'=b/b'=c/c'=4
=>a=4a';b=4b';c=4c'
=>a+b+c/a'+b'+c'=4a'+4b'+4c'/a'+b'+c'
=4.(a'+b'+c')/a'+b'+c'
=4
b, lam tuong tu phan a
+) Ta có
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\Rightarrow\frac{a}{a'}=\frac{3b}{3b'}=\frac{2c}{2c'}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\Rightarrow\frac{a}{a'}=\frac{3b}{3n'}=\frac{2c}{2c'}=\frac{a-3b+2c}{a'-3b'+2c'}=4\)
=> P=4
+)
Áp dụng tc của dãy tỉ số bằng nhau ta có
\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=\frac{a+b+c}{a'+b'+c'}=4\)
=> Q=4