K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017
Đặt a/2013=b/2014=c/2015=ka2013=b2014=c2015=k => a=2013k; b=2014k; c=2015k

Ta có: 4(a-b)(b-c) = 4(2013k-2014k)(2014k-2015k)

= 4(-k)(-k) = 4k2 (1)

Lại có: (c-a)2 = (2015k-2013k)2 = (2k)2 = 4k2 (2)

Từ (1) và (2) => 4(a-b)(b-c)=(c-a)2 (đpcm)

Các bạn k cần trả lời nữa! Thông cảm nha! thanghoa

31 tháng 1 2017

Đặt \(\frac{a}{2013}=\frac{b}{2014}=\frac{c}{2015}=k\) => a=2013k; b=2014k; c=2015k

Ta có: 4(a-b)(b-c) = 4(2013k-2014k)(2014k-2015k)

= 4(-k)(-k) = 4k2 (1)

Lại có: (c-a)2 = (2015k-2013k)2 = (2k)2 = 4k2 (2)

Từ (1) và (2) => 4(a-b)(b-c)=(c-a)2 (đpcm)

9 tháng 1 2017

Bài 2)

Ta có \(\frac{a}{b}< \frac{c}{d}\)

\(\Rightarrow ad< bc\)

Xét \(\frac{a}{b}< \frac{a+c}{b+d}\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow ab+ad< ab+bc\)

\(\Rightarrow ad< bc\) ( thỏa mãn đề bài )

Vậy \(\frac{a}{b}< \frac{a+c}{b+d}\) (1)

Xét \(\frac{a+c}{b+d}< \frac{c}{d}\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow ad< bc\) ( thỏa mãn đề bài )

Vậy \(\frac{a+c}{b+d}< \frac{c}{d}\) (2)

Từ (1) (2)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)

10 tháng 1 2017

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}{2013+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}}\)

Đặt \(B=2013+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}\)

\(=\left(2013-2013\right)\left(\frac{2013}{2}+1\right)+...+\left(\frac{1}{2014}+1\right)\)

\(=0+\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}\)

\(=2015\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)

Thay B vào A ta được:

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}{2015\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}\)

\(=\frac{1}{2015}\)

Vậy \(A=\frac{1}{2015}\)

8 tháng 1 2017

Đặt \(\frac{a}{2013}\) = \(\frac{b}{2014}\) = \(\frac{c}{2015}\) = k

nên a = 2013k; b = 2014k và c = 2015k

Xét hiệu:

4(2013k - 2014k)(2014k - 2015k) - (2015k - 2013k)2

= 4(-k)(-k) - (2k)2

= 4k2 - 4k2 = 0

Vậy 4(a - b)(b - c) = (c - a)2.

8 tháng 1 2017

thank kiu

3 tháng 7 2017

Ta có : \(\frac{a+2014}{a-2014}=\frac{a+2015}{a-2015}\)

\(\Rightarrow\left(a+2014\right)\left(a-2015\right)=\left(a-2014\right)\left(a+2015\right)\)

\(\Rightarrow a^2-a-2014.2015=a^2+a-2014.2015\)

\(\Leftrightarrow a^2-a=a^2+a\)

=> a2 - a2 - a = a

=> -a = a

=>  0 = a + a

=> 2a = 0

=> a = 0 

Vậy \(\frac{a}{2014}=\frac{b}{2015}\) (đpcm)

31 tháng 1 2016

\(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=\frac{a-b}{2014-2015}=\frac{b-c}{2015-2016}=\frac{c-a}{2016-2014}\)

=\(\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)=>\(\frac{\left(a-b\right)\left(b-c\right)}{\left(-1\right)\left(-1\right)}=\frac{\left(c-a\right)^2}{2^2}=\frac{\left(a-b\right)\left(b-c\right)}{1}=\frac{\left(c-a\right)^2}{4}\Leftrightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

31 tháng 10 2016

bài gì khó thế!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

bí bí bí

13 tháng 12 2017

sửa đề câu 1.

cho \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

...

giải

cộng 1 vào mỗi tỉ số ta được :

\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)

hay \(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)

+)  nếu a + b + c = 0 thì :

b + c = -a ; a + c = -b ; a + b = -c

\(\Rightarrow P=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}=-1+\left(-1\right)+\left(-1\right)=-3\)

+ ) nếu a + b + c \(\ne\)0 thì : a = b = c

\(\Rightarrow P=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)

Vậy ...

2) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{a}{2014}=\frac{b}{2015}=\frac{c}{2016}=\frac{a-b}{2014-2015}=\frac{b-c}{2015-2016}=\frac{c-a}{2016-2014}\)

hay \(\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)

\(\Rightarrow\left(\frac{a-b}{-1}\right).\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2\)

\(\Rightarrow\left(a-b\right).\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)

\(\Rightarrow4.\left(a-b\right).\left(b-c\right)=\left(c-a\right)^2\)

Vậy ...