Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lúc đầu 2bx mới đúng. nhân cả tử và mẫu lần lượt với a, 2b, 3c có
\(\frac{2abx-3acy}{a^2}=\frac{6bcx-2baz}{4b^2}=\frac{3cay-6cbx}{9c^2}=\frac{2abx-3acy+6bcx-2baz+3cay-6cbx}{a+4b^2+9c^2}=0\)
\(\Rightarrow\frac{2bx-3cy}{a}=0\Rightarrow2bx-3cy=0\Rightarrow\frac{y}{2b}=\frac{z}{3c}\)cm tương tự ta có: x/a = z/3c =>đpcm. h cho mình nha, cả tối nghĩ
Ta có: \(\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}.\)
\(\Rightarrow\frac{a.\left(2bz-3cy\right)}{a^2}=\frac{2b.\left(3cx-az\right)}{4b^2}=\frac{3c.\left(ay-2bx\right)}{9c^2}.\)
\(\Rightarrow\frac{2abz-3acy}{a^2}=\frac{6bcx-2abz}{4b^2}=\frac{3acy-6bcx}{9c^2}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2abz-3acy}{a^2}=\frac{6bcx-2abz}{4b^2}=\frac{3acy-6bcx}{9c^2}=\frac{2abz-3acy+6bcx-2abz+3acy-6bcx}{a^2+4b^2+9c^2}=\frac{\left(2abz-2abz\right)-\left(3acy-3acy\right)+\left(6bcx-6bcx\right)}{a^2+4b^2+9c^2}=0.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{2bz-3cy}{a}=0\\\frac{3cx-az}{2b}=0\\\frac{ay-2bx}{3c}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2bz-3cy=0\\3cx-az=0\\ay-2bx=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2bz=3cy\\3cx=az\\ay=2bx\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{z}{3c}=\frac{y}{2b}\\\frac{x}{a}=\frac{z}{3c}\\\frac{y}{2b}=\frac{x}{a}\end{matrix}\right.\Rightarrow\frac{x}{a}=\frac{y}{2b}=\frac{z}{3c}\left(đpcm\right).\)
Chúc bạn học tốt!
\(\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}\)
Suy ra: \(\frac{a.\left(2bz-3cy\right)}{a.a}=\frac{2b\left(3cx-az\right)}{2b.2b}=\frac{3c.\left(ay-2bx\right)}{3c.3c}\)
\(\Rightarrow\frac{2abz-3acy}{a^2}=\frac{3bcx-abz}{2b^2}=\frac{acy-2cbx}{3c^2}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{2abz-3acy+6bcx-2abz+3acy-6bcx}{a^2+2b^2+3c^2}=\frac{0}{a^2+2b^2+3c^2}=0\)
\(\Rightarrow\hept{\begin{cases}2bz=3cy\\3cx=az\\ay=2bx\end{cases}\Rightarrow\hept{\begin{cases}\frac{z}{3c}=\frac{y}{2b}\\\frac{x}{a}=\frac{z}{3c}\\\frac{y}{2b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{2b}=\frac{z}{3c}}\)
=> đpcm
Theo đề: \(\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}\)
\(\Rightarrow\frac{2bza-3acy}{a^2}=\frac{6cxb-2bza}{4b^2}=\frac{3ayc-6bxc}{9c^2}\)
\(=\frac{2bza-3cya+6xbc-2bza+3ayc-6bxc}{a^2+4b^2+9c^2}\)
\(=0\)
\(\Rightarrow\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}=0\)
\(\Rightarrow2bz=3cy;3cx=az;ay=2bx\)
\(\Rightarrow\frac{x}{a}=\frac{y}{2b}=\frac{z}{3c}\left(đpcm\right)\)
Ta có: \(\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}\)
\(\Rightarrow\frac{2bzx-3cyx}{ax}=\frac{3cxy-azy}{2by}=\frac{ayz-2bxz}{3xz}\)
\(=\frac{2bzx-3cyx-3cxy-azy-ayz-2bxz}{ax-2by-3xz}=0\)
\(\Rightarrow\)\(\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}=0\)
\(\Rightarrow2bz=3cy;\)\(3cx=az;\)\(ay=2bx\)
\(\Rightarrow\frac{x}{a}=\frac{y}{2b}=\frac{z}{3c}\).