K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2018

\(A+3=\left(1+\frac{x+y}{z}\right)+\left(1+\frac{x+z}{y}\right)+\left(1+\frac{y+z}{x}\right)\)

\(A+3=\left(x+y+z\right).\left(\frac{1}{z}+\frac{1}{y}+\frac{1}{x}\right)\)

\(A+3=\left(x+y+z\right).0=0\Rightarrow A=-3\)

4 tháng 11 2018

\(A=\frac{x+y}{z}+\frac{x+z}{y}+\frac{y+z}{x}=\left(\frac{x+y}{z}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{y+z}{x}+1\right)-3\)

\(=\frac{x+y+z}{z}\cdot\frac{x+y+z}{y}\cdot\frac{x+y+z}{x}-3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-3=-3\)

18 tháng 7 2017

Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

Suy ra : xy + yz + zx = 0 (nhân cả hai vế với xyz)

Khi đó : \(\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}=1\)

18 tháng 7 2017

Chỉ hộ cho tôi tại sao :

\(\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(y-x\right)\left(y-z\right)}+\frac{xy}{\left(z-x\right)\left(z-y\right)}=1\)với

Đừng có làm bừa chứ Nguyễn Quang Trung

30 tháng 1 2017

+ Nếu x + y + z = 0 => x + y = -z; y + z = -x; x + z = -y

A = (1 + y/x)(1 + z/y)(1 + x/z)

A = (x+y)/x . (y+z)/y . (x+z)/z

A = -z/x . (-x)/y . (-y)/z = -1

+ Nếu x + y + z khác 0

x-y-z/x = -x+y-z/y = -x-y+z/z

<=> 1 - (y+z)/x = 1 - (x+z)/y = 1 - (x+y)/z

<=> y+z/x = x+z/y = x+y/z

Áp dụng t/c của dãy tỉ số = nhau ta có:

y+z/x = x+z/y = x+y/z = 2(x+y+z)/x+y+z = 2

A = (x+y)/x . (y+z)/y . (x+z)/z = 8

\(\Rightarrow A=2.\)

1 tháng 9 2016

\(\frac{x-y-z}{x}=\frac{y-x-z}{y}=\frac{z-x-y}{z}=\frac{x-y-z+y-x-z+z-x-y}{x+y+z}=\frac{-x-y-z}{x+y+z}=-1\)

\(\rightarrow\begin{cases}x-y-z=-x\\y-x-z=-y\\z-x-y=-z\end{cases}\)

\(\leftrightarrow\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}\)

\(A=\frac{x+y}{z}.\frac{y+z}{x}.\frac{z+x}{y}=8\)

2 tháng 1 2017

Hay quớ ak! Mơn m nhìu nha ný! <3 <3 <3 (not thả thính =))))

3 tháng 1 2017

chỉ thả tai thui

2 tháng 1 2019

a) \(A=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}+\frac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

         \(=\frac{2\left(y-z\right)\left(z-x\right)+2\left(x-y\right)\left(z-x\right)+2\left(x-y\right)\left(y-z\right)+\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

           \(=\frac{\left[\left(x-y\right)+\left(y-z\right)+\left(z-x\right)\right]^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(x-y+y-z+z-x\right)^2}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=0\)

Áp dụng: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

2 tháng 1 2019

b)Ta có: \(\frac{x^2}{y+z}+x=\frac{x^2+x\left(y+z\right)}{y+z}=\frac{x^2+xy+xz}{y+z}=\frac{x\left(x+y+z\right)}{y+z}\)

    Tương tự:   \(\frac{y^2}{x+z}+y=\frac{y^2+xy+zy}{x+z}=\frac{y\left(x+y+z\right)}{x+z}\)

                \(\frac{z^2}{x+y}+z=\frac{z^2+xz+zy}{x+y}=\frac{z\left(x+y+z\right)}{x+y}\)

Suy ra: \(A+\left(x+y+z\right)\)

\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{x+y}+\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}+1\right)\)

  \(=2.\left(x+y+z\right)\)

Nên \(A=2.\left(x+y+z\right)-\left(x+y+z\right)=x+y+z\)

Mình có sai chỗ nào không nhỉ?

20 tháng 1 2017

\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}\Rightarrow k=2\Rightarrow x=y=z=1\)

A=6

20 tháng 1 2017

\(\frac{x-y-z}{x}=1-\frac{y+z}{x}\) tương tự con khác

=> x=y=z

=> A=6