K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow a^2b+abc+a^2c+b^2a+b^2c+abc+c^2b+c^2a=0\)

\(\Leftrightarrow ab\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(ab+ac+bc+c^2\right)\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

So ez

....

26 tháng 11 2020

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c 

\(\sum\)\(\frac{a}{1+a^2}\)\(\le\)\(\sum\)\(\frac{a}{2a}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

\(VT=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{\frac{2}{3}\left(a+b+c\right)^2}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

sao olm ko hiện \(\sum\) ra nhỉ ? thoi mk ghi lại v 

\(\frac{a}{1+a^2}\le\frac{a}{2a}=\frac{1}{2}\)

tương tự 2 cái kia cộng lại t có bđt cần cm 

6 tháng 7 2016

Trả lời hộ mình đi

6 tháng 7 2019

Có đk j nữa chứ bạn ?

6 tháng 7 2019

\(\frac{3}{2}\le\)\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

Đặt: b + c = x

      a + c = y

     a + b = z

Ta có: x + y - z = b + c + a + c - a - b = 2c

      \(\frac{x+y-z}{2}=c\)

Tương tự: \(\frac{x+z-y}{2}=b\)

      \(\frac{z+y-x}{2}=a\)

Khi  đó: VP \(\ge\) \(\frac{z+y-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

  VP \(\ge\) \(\frac{z+y}{2x}-\frac{x}{2x}+\frac{x+z}{2y}-\frac{y}{2y}+\frac{x+y}{2z}-\frac{z}{2z}\)

VP \(\ge\) \(\frac{z+y}{2x}-\frac{1}{2}+\frac{x+z}{2y}-\frac{1}{2}+\frac{x+y}{2z}-\frac{1}{2}\)

VP \(\ge\)  \(\frac{z+y}{2x}+\frac{x+z}{2y}+\frac{x+y}{2z}-\frac{3}{2}\)

VP \(\ge\) \(\frac{1}{2}.\left(\frac{z+y}{x}+\frac{x+z}{y}+\frac{x+y}{z}\right)-\frac{3}{2}\)

VP \(\ge\) \(\frac{1}{2}.\left(\frac{z}{x}+\frac{y}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\right)-\frac{3}{2}\)

Ta có: \(\frac{z}{x}+\frac{x}{z}\ge2\)

\(\Leftrightarrow\)\(\frac{z^2}{x\text{z}}+\frac{x^2}{x\text{z}}\ge\frac{2xz}{x\text{z}}\)

\(\Leftrightarrow\)\(x^2-2xz+z^2\ge0\)

\(\Leftrightarrow\)\(\left(x-z\right)^2\ge0\) ( luôn đúng )

\(\Rightarrow\) \(\frac{z}{x}+\frac{x}{z}\ge2\)

Tương tự:  \(\frac{y}{x}+\frac{x}{y}\ge2\)

   \(\frac{y}{z}+\frac{z}{y}\ge2\)

\(\Rightarrow\)VP\(\ge\)\(\frac{1}{2}.6-\frac{3}{2}\)

      VP\(\ge\frac{3}{2}\) 

\(\Rightarrow\) \(\frac{3}{2}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

Áp dụng bđt AM-GM ta có

\(abc\le\left(\frac{a+b+c}{3}\right)^3=1\)

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2}}\ge3\sqrt[3]{\frac{1}{a^3b^3c^3}}=\frac{3}{abc}\)

Ta chứng minh: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{3}{abc}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}\le\frac{3}{abc}\)

\(\Leftrightarrow ab+bc+ca\le3=\frac{\left(a+b+c\right)^2}{3}\)(luôn đúng)

Vậy bđt được chứng minh

Dấu "=" xảy ra khi a=b=c=1

9 tháng 6 2020

Dòng thứ 3 của Linh bị ngược dấu rồi. 

Chứng minh các khác: 

Có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\)  (@)

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\)(1)

Ta chứng minh: \(\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(2)

<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\)đúng theo (@) 

=> (2) đúng 

Từ (1) ; (2) => \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Dấu "=" xảy ra <=> a = b = c = 1.

6 tháng 10 2020

Mình xem phép làm câu 1 ạ. 

Đề là?

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)

Chứng minh tương đương 

\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc  - 9ab + 6b2 \(\le\)0 ( quy đồng )  (2)

Từ (1) <=> 2ac = ab + bc  Thay vào (2) <=> 6ab + 6bc - 9bc  - 9ab + 6b2  \(\le\)

<=> a + c \(\ge\)2b 

Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)

=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng

Dấu "=" xảy ra <=> a = c = b

 
4 tháng 7 2019

Ta có \(\frac{1}{a^3}+\frac{1}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)

\(\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{b^2c}\)

..............................

=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\left(1\right)\)

Áp dụng bđt cosi ta có

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)

\(\frac{b^2}{c^5}+\frac{1}{b^2c}\ge\frac{2}{c^3}\)

\(\frac{c^2}{d^5}+\frac{1}{c^2d}\ge\frac{2}{d^3}\)

\(\frac{d^2}{a^5}+\frac{1}{d^2a}\ge\frac{2}{a^3}\)

Cộng vế của các bđt trên và kết hợp với (1)

=> ĐPCM

Dấu bằng xảy ra khi a=b=c

7 tháng 9 2019

Làm bài này một hồi chắc bay não:v

Bài 1:

a) Áp dụng BĐT AM-GM:

\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi a = b = c.

b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.

Bài 2:

a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v

b) Theo BĐT Bunhicopxki:

\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)

Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)

Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:

\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)

7 tháng 9 2019

Nói trước là bài 3 em không chắc, tự dưng thấy tại sao lại có đk \(\left|x\right|< 1;\left|y\right|< 1?!?\) Chẳng lẽ lời giải của em sai hay là đề thừa?

NV
21 tháng 4 2020

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\) ; \(\frac{c}{1+a^2}\ge c-\frac{ac}{2}\)

Cộng vế với vế:

\(VT\ge a+b+c-\frac{1}{2}\left(ab+bc+ca\right)\ge3-\frac{1}{6}\left(a+b+c\right)^2=3-\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)