\(f\left(x\right)=ax^3+2bx^2+3xcx+4d\) và \(a,b,c,d\in Z\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2018

: Giả sử tồn tại đồng thời f(7) = 73 và f(3) = 58 :
=> f(7) = a.7^3 + b.7^2 + c.7 + d = 343a + 49b + 7c + d
f(3) = a.3^3 + b.3^2 + c.3 + d = 27a + 9b + 3c + d
=> f(7) + f(3) = 343a + 27a + 49b + 9b + 7c + 3c + d + d
=> f(7) + f(3) = 370a + 58b + 10c + 2d ⋮ 2 (vì a, b, c, d là các số nguyên)
=> f(7) + f(3) ⋮ 2
Nhưng theo giả thiết thì f(7) + f(3) = 73 + 58 = 131 không chia hết cho 2.
=> giả thiết nêu ra là vô lý.
Vậy với f(x) = ax^3 + bx^2 + cx + d (a, b, c, d là các số nguyên) thì không thể tồn tại f(7) = 73 và f(3) = 58.

DD
4 tháng 2 2021

\(f\left(-1\right)=-a+b-c+d=2\)

\(f\left(0\right)=d=1\)

\(f\left(\frac{1}{2}\right)=\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c+d=3\)

\(f\left(1\right)=a+b+c+d=7\)

Suy ra \(\hept{\begin{cases}-a+b-c=1\\\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c=2\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}2b=7\\\frac{1}{8}a+\frac{1}{4}b+\frac{1}{2}c=2\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{1}{3}\\b=\frac{7}{2}\\c=\frac{13}{6}\end{cases}}\)

16 tháng 11 2016

Thay f(17) và f(12) vào đa thức f(x)=ax+b ta có:

\(\hept{\begin{cases}12a+b=35\\17a+b=71\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=35-12a\\17a+35-12a=71\end{cases}}\)

\(\Leftrightarrow5a=36\)

\(\Leftrightarrow a=\frac{36}{5}\)

Theo đề bài \(a,b\in Z\)

Nên không thể đồng thời có  f(17)=71 và f(12)=35 

16 tháng 11 2016

Vãi làm theo cách lớp 9 tìm a,b rồi 

AH
Akai Haruma
Giáo viên
29 tháng 8 2017

Lời giải:

Ta có thể viết dạng của $f(x)$ như sau:

\(f(x)=(x-1)(x-2)(x-3)(x-t)+g(x)\)

Trong đó, \(t\) là một số bất kỳ nào đó và \(g(x)\) là đa thức có bậc nhỏ hơn hoặc bằng $3$

Giả sử \(g(x)=mx^3+nx^2+px\)

\(\left\{\begin{matrix} f(1)=g(1)=m+n+p=10\\ f(2)=g(2)=8m+4n+2p=20\\ f(3)=g(3)=27m+9n+3p=30\end{matrix}\right.\)

Giải hệ trên thu được \(m=0,n=0,p=10\)

Như vậy \(f(x)=(x-1)(x-2)(x-3)(x-t)+10x\)

Do đó \(\left\{\begin{matrix} f(12)=990(12-t)+120=12000-990t\\ f(-8)=-990(-8-t)-80=7840+990t\end{matrix}\right.\)

\(\Rightarrow \frac{f(12)+f(-8)}{10}+26=\frac{12000+7840}{10}+26=2010\) (đpcm)

9 tháng 5 2017

\(f\left(1\right)=a+b+c+d=a+4a+c+c+d=5a+2c+d\)

\(f\left(-2\right)=-8a+4b-2c+a=-8a+12a+4c-2c+a=5a+2c+d\)

\(f\left(1\right)f\left(-2\right)=\left(5a+2c+d\right)^2\)

(a,b,c,d thuộc Z => 5a+2c+d thuộc z => (5a+2c+d)^2 là số CP => dpcm

3 tháng 4 2017

Ta có: \(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow f\left(0\right)=c⋮3\Rightarrow c⋮3\)

\(\left\{{}\begin{matrix}f\left(1\right)=a+b+c⋮3\\f\left(-1\right)=a-b+c⋮3\end{matrix}\right.\)

\(c⋮5\)

\(\Rightarrow\left\{{}\begin{matrix}a+b⋮3\\a-b⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a⋮3\\2b⋮3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a⋮3\\b⋮3\end{matrix}\right.\) ( do \(\left(2;3\right)=1\) )

Vậy \(a,b,c⋮3\)

19 tháng 3 2018

Ko trả lời khôn thế bài tu làm mà còn đi hỏi 

19 tháng 3 2018

Tôi làm đc rồi