K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

\(\left\{{}\begin{matrix}F\left(x\right)=3x^2-2x-1\\F\left(x\right)=0\end{matrix}\right.\)\(\Rightarrow3x^2-2x-1=0\)

\(\Rightarrow 3x^2-3x+x-1=0\)

\(\Rightarrow3x\left(x-1\right)+\left(x-1\right)=0\)

\(\Rightarrow\left(3x+1\right)\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)

26 tháng 3 2017

Xét \(3x^2-2^x-1=0\)

=\(3x^2-3x+x-1=0\)

=\(3x.\left(x-1\right)+\left(x-1\right)\)

=\(\left(3x+1\right).\left(x-1\right)\)

\(\Rightarrow3x+1=0\) hoặc \(x-1=0\)

\(x=\dfrac{-1}{3}\) hoặc \(x=1\)

Vậy \(x\in\left(\dfrac{-1}{3};1\right)\)để\(f\left(x\right)=0\)

28 tháng 3 2018

Ta có: \(F\left(x\right)+G\left(x\right)-H\left(x\right)=0\)

\(\Leftrightarrow4x^2+3x-2+3x^2-2x+5-5x^2+2x-3=0\\ \Leftrightarrow2x^2+3x=0\\ \Rightarrow x\left(2x+3\right)=0\\ \Rightarrow x=0;x=\dfrac{-3}{2}\)

Vậy tìm được x thỏa mãn là: \(x=0;x=\dfrac{-3}{2}\)

6 tháng 4 2018

a)   \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)

\(=x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)

\(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)

\(=2x+1\)

b)      \(f\left(x\right)-g\left(x\right)+h\left(x\right)=0\)

\(\Leftrightarrow\)\(2x+1=0\)

\(\Leftrightarrow\)\(x=-\frac{1}{2}\)

17 tháng 1 2020

\(2x+1=2x^2-3x+3\)

\(\Leftrightarrow2x^2-3x-2x+3-1=0\)

\(\Leftrightarrow2x^2-5x+2=0\)

Ta có \(\Delta=5^2-4.2.2=9,\sqrt{\Delta}=3\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{5+3}{4}=2\\x=\frac{5-3}{4}=\frac{1}{2}\end{cases}}\)

17 tháng 1 2020

Vì \(f\left(x\right)=g\left(x\right)\)\(\Rightarrow g\left(x\right)-f\left(x\right)=0\)

\(\Leftrightarrow\left(2x^2-3x+3\right)-\left(2x+1\right)=0\)

\(\Leftrightarrow2x^2-5x+2=0\)\(\Leftrightarrow2x^2-x-4x+2=0\)

\(\Leftrightarrow x\left(2x-1\right)-2\left(2x-1\right)=0\)\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)

Vậy \(x=\frac{1}{2}\)hoặc \(x=2\)

27 tháng 12 2019

\(f\left(x\right)+h\left(x\right)-g\left(x\right)\)

\(=\left(5x^4+3x^2+x-1\right)+\left(-x^4+3x^3-2x^2-x+2\right)\)

\(-\left(2x^4-x^3+x^2+2x+1\right)\)

\(=\left(5x^4-x^4-2x^4\right)+\left(3x^3+x^3\right)+\left(3x^2-2x^2-x^2\right)\)

\(+\left(x-x-2x\right)+\left(-1+2-1\right)\)

\(=2x^4+4x^3-2x\)

4 tháng 9 2019

\(f\left(x\right)=\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)

\(\Rightarrow f\left(1\right)+f\left(2\right)+....+f\left(x\right)=1-\frac{1}{2^2}+\frac{1}{2^2}-....-\frac{1}{\left(x+1\right)^2}\)

\(\Rightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)

\(\Leftrightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-20+\left(x+1\right)=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)

Dat:\(x+1=a\Rightarrow\frac{\left(2y+1\right)a^3-20a^2-1}{a^2}=\frac{a^2-1}{a^2}\Leftrightarrow\left(2y+1\right)a^3-20a^2-1=a^2-1\)

\(\Leftrightarrow\left(2y+1\right)a^3-20a^2=a^2\Leftrightarrow\left(2ay+a\right)-20=1\left(coi:x=-1cophailanghiemko\right)\)

\(\Leftrightarrow2ay+a=21\Leftrightarrow a\left(2y+1\right)=21\Leftrightarrow\left(x+1\right)\left(2y+1\right)=21\)

5 tháng 4 2017

a/ \(f\left(-\dfrac{1}{2}\right)=4.\left(-\dfrac{1}{2}\right)^2+3.\left(-\dfrac{1}{2}\right)-2\)

\(=4\cdot\dfrac{1}{4}-\dfrac{3}{2}-2=1-\dfrac{3}{2}-2=-\dfrac{5}{2}\)

b/

\(f\left(x\right)+g\left(x\right)-h\left(x\right)=4x^2+3x-2+x^2+2x+3-5x^2+2x-8\)

\(=\left(4x^2+x^2-5x^2\right)+\left(3x+2x+2x\right)+\left(-2+3-8\right)\)

\(=7x-7\)

Ta có: \(f\left(x\right)+g\left(x\right)-h\left(x\right)=7x-7=0\)

\(\Leftrightarrow7x=7\Rightarrow x=1\)

Vậy để...............

c/ \(g\left(x\right)=x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\)

\(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2\ge2\)

hay \(\left(x+1\right)^2+2>0\)

\(\Rightarrow g\left(x\right)\) vô nghiệm (đpcm)

Ta có \(f\left(1\right)=g\left(2\right)\)

hay \(2.1^2+a.1+4=2^2-5.2-b\)

           \(2+a+4\)    \(=4-10-b\)

           \(6+a\)          \(=-6-b\)

          \(a+b\)           \(=-6-6\)

          \(a+b\)           \(=-12\)                    \(\left(1\right)\)

Lại có \(f\left(-1\right)=g\left(5\right)\)

hay \(2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\) 

                 \(2-a+4\)          \(=25-25-b\)

                \(6-a\)                 \(=-b\)

              \(-a+b\)                \(=-6\)

                 \(b-a\)                \(=-6\)

                 \(b\)                      \(=-b+a\)                       \(\left(2\right)\)

Thay \(\left(2\right)\) vào \(\left(1\right)\) ta được:

   \(a+\left(-6+a\right)=-12\)

   \(a-6+a\)      \(=-12\)

      \(a+a\)         \(=-12+6\)

        \(2a\)            \(=-6\)

         \(a\)             \(=-6:2\)

         \(a\)             \(=-3\)

Mà \(a=-3\) 

⇒ \(b=-6+\left(-3\right)=-9\)

Vậy \(a=3\) và \(b=-9\)

 

 

 

 

 

                               

Cái Vậy \(a=3\) và \(b=-9\) bạn ghi là \(a=-3\) và \(b=-9\) nha mk quên ghi dấu " \(-\) "