Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
25.
\(R=\dfrac{BC}{2}\)
\(r=\dfrac{BC}{2}.tan\left(\dfrac{45^0}{2}\right)=\dfrac{BC\left(\sqrt{2}-1\right)}{2}\)
\(\Rightarrow\dfrac{R}{r}=\dfrac{1}{\sqrt{2}-1}=1+\sqrt{2}\)
26.
\(\left\{{}\begin{matrix}a=2R.sinA\\b=2RsinB\\c=2RsinC\end{matrix}\right.\) \(\Rightarrow2R.sinA+2R.sinB=2.2R.sinC\)
\(\Rightarrow sinA+sinB=2sinC\)
27.
\(p=\dfrac{13+14+15}{2}=21\)
\(S=\sqrt{p\left(p-13\right)\left(p-14\right)\left(p-15\right)}=84\)
28.
\(AM=\sqrt{\dfrac{2\left(AB^2+AC^2\right)-BC^2}{4}}=7,5\left(cm\right)\)
12 sai, C mới là đáp án đúng
13 sai, A đúng, \(sin-sin=2cos...sin...\)
18.
\(\Leftrightarrow\left\{{}\begin{matrix}a=m>0\\\Delta'=m^2-m\left(-m+3\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m^2-3m< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\0< m< \dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow m=1\)
Đáp án B
22.
Để pt có 2 nghiệm pb \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\Delta'=\left(2m-3\right)^2-\left(m-2\right)\left(5m-6\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\-m^2+4m-3>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\1< m< 3\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(2m-3\right)}{m-2}\\x_1x_2=\dfrac{5m-6}{m-2}\end{matrix}\right.\)
\(\dfrac{-2\left(2m-3\right)}{m-2}+\dfrac{5m-6}{m-2}\le0\)
\(\Leftrightarrow\dfrac{m}{m-2}\le0\) \(\Leftrightarrow0\le m< 2\)
Kết hợp điều kiện delta \(\Rightarrow1< m< 2\)
24.
Đề bài câu này dính lỗi, ko có điểm M nào cả, chắc là đường thẳng đi qua A
Đường tròn (C) tâm I(1;-2) bán kính R=4
\(\overrightarrow{IA}=\left(1;3\right)\)
Gọi d là đường thẳng qua A và cắt (C) tại 2 điểm B và C. Gọi H là trung điểm BC
\(\Rightarrow IH\perp BC\Rightarrow IH=d\left(I;d\right)\)
Theo định lý đường xiên - đường vuông góc ta luôn có: \(IH\le IA\)
Áp dụng Pitago cho tam giác vuông IBH:
\(BH=\sqrt{IB^2-IH^2}\Leftrightarrow\dfrac{BC}{2}=\sqrt{16-IH^2}\)
\(\Rightarrow BC_{min}\) khi \(IH_{max}\Leftrightarrow IH=IA\)
\(\Leftrightarrow IA\perp d\Rightarrow d\) nhận \(\overrightarrow{IA}\) là 1 vtpt
Phương trình d:
\(1\left(x-2\right)+3\left(y-1\right)=0\Leftrightarrow x+3y-5=0\)
24.
Đường thẳng có 1 vtcp là \(\overrightarrow{u}=\left(2;-5\right)\)
25.
\(a^2=b^2+c^2-2bc.cosA\)
26.
A là mệnh đề sai, công thức đúng: \(S=\dfrac{1}{2}ab.sinC\)
27.
\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=\sqrt{3^2+4^2-2.3.4.cos60^0}=\sqrt{13}\)
28.
\(\widehat{A}=180^0-\left(35^030'+45^0\right)=99^030'\)
Áp dụng định lý hàm sin:
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}\Rightarrow b=\dfrac{a.sinB}{sinA}=\dfrac{12,5.sin\left(35^030'\right)}{sin\left(99^030'\right)}=7,36\left(m\right)\)
A đúng Vì:
Trong 1 tam giác ta luôn có :
\(b-c< a\Rightarrow\left(b-c\right)^2< a^2\Rightarrow b^2+c^2-a^2< 2bc\Rightarrow\dfrac{b^2+c^2}{4}-\dfrac{a^2}{4}< \dfrac{2bc}{4}\Rightarrow\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}< \dfrac{b^2+c^2+2bc}{4}=\dfrac{\left(b+c\right)^2}{4}\Rightarrow\sqrt{\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}}< \dfrac{b+c}{2}\) Mà \(m_a=\sqrt{\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}}\Rightarrow m_a< \dfrac{b+c}{2}\)
Mệnh đề sai là C
C sai bởi vì ABCD chỉ có thể là hình chữ nhật khi và chỉ khi nó thỏa mãn cùng lúc 2 điều kiện sau:
ABCD là hình bình hành và AC=BD thì mới ra hình chữ nhật
Còn nếu chỉ có AC=BD thì là sai