\(E=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2018

ta có: \(1+2+3+...+n=\frac{n.\left(n+1\right)}{2}\)

\(\Rightarrow1-\frac{1}{1+2+3+...+n}=1-1:\frac{n.\left(n+1\right)}{2}=1-\frac{2}{n.\left(n+1\right)}\)

\(=\frac{n.\left(n+1\right)-2}{n.\left(n+1\right)}=\frac{n^2+n-2}{n.\left(n+1\right)}=\frac{\left(n+2\right).\left(n-1\right)}{n.\left(n+1\right)}\) (*)

Từ (*) 

\(\Rightarrow1-\frac{1}{1+2}=\frac{4.1}{2.3};1-\frac{1}{1+2+3}=\frac{5.2}{3.4};...;1-\frac{1}{1+2+3+...+n}=\frac{\left(n+2\right).\left(n-1\right)}{n.\left(n+1\right)}\)

\(\Rightarrow E=\frac{4.1}{2.3}.\frac{5.2}{3.4}...\frac{\left(n+2\right).\left(n-1\right)}{n.\left(n+1\right)}=\frac{4.1.5.2...\left(n+1\right).\left(n-2\right).\left(n+2\right).\left(n-1\right)}{2.3.3.4....\left(n-1\right).n.n.\left(n+1\right)}\)\(=\frac{n+2}{n.n}\)

\(\Rightarrow\frac{E}{F}=E:F=\left(\frac{n+2}{n.n}\right):\frac{n+2}{n}=\frac{n+2}{n.n}.\frac{n}{n+2}=\frac{1}{n}\)

\(\Rightarrow\frac{E}{F}=\frac{1}{n}\)

25 tháng 3 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)

\(\Rightarrow\)\(A< 1\) ( đpcm ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

25 tháng 2 2017

k cho mk mk giải cho

25 tháng 2 2017

???????????????????????????????????/////

9 tháng 7 2021

1. 

a.\(\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

b. \(\left(\frac{1}{2}\right)^3=\frac{1}{8}\)

c. \(\left(\frac{-3}{5}\right)^5=\frac{-243}{3125}\)

d. \(\left(\frac{-1}{5}\right)^2=\frac{1}{25}\)

e. \(\left(\frac{-1}{6}\right)^3=\frac{-1}{216}\)

10 tháng 7 2021

Trả lời:

Bài 1: 

a, \(\left(\frac{1}{2}\right)^4=\frac{1^4}{2^4}=\frac{1}{16}\)

b, \(\left(\frac{1}{2}\right)^3=\frac{1^3}{2^3}=\frac{1}{8}\)

c, \(\left(\frac{-3}{5}\right)^2=\frac{\left(-3\right)^2}{5^2}=\frac{9}{25}\)

d, \(\left(\frac{-1}{5}\right)^2=\frac{\left(-1\right)^2}{5^2}=\frac{1}{25}\)

e, \(\left(\frac{-1}{6}\right)^3=\frac{\left(-1\right)^3}{6^3}=\frac{-1}{216}\)

Bài 2:

a, \(\left(\frac{3}{2}\right)^2.\left(\frac{4}{3}\right)^2=\frac{9}{4}.\frac{16}{9}=4\)

b, \(\left(-\frac{1}{2}\right)^3.\left(\frac{2}{3}\right)^3=-\frac{1}{8}.\frac{8}{27}=-\frac{1}{27}\)

c, \(\left(-\frac{1}{2}\right)^2.\left(\frac{2}{5}\right)^2=\frac{1}{4}.\frac{4}{25}=\frac{1}{25}\)

d, \(\left(-\frac{1}{2}\right)^3.\left(\frac{2}{3}\right)^3=-\frac{1}{8}.\frac{8}{27}=-\frac{1}{27}\)

e, \(\left(-5\right)^3.\frac{1}{5}=-125.\frac{1}{5}=-25\)

f, \(\left(\frac{2}{9}\right)^5.\left(-\frac{27}{4}\right)^5=\frac{2^5}{9^5}.\frac{\left(-27\right)^5}{4^5}=\frac{2^5.\left(-27\right)^5}{9^5.4^5}=\frac{2^5.\left[\left(-3\right)^3\right]^5}{\left(3^2\right)^5.\left(2^2\right)^5}=-\frac{2^5.3^{15}}{3^{10}.2^{10}}=\frac{3^5}{2^5}\)

7 tháng 2 2017

\(A=\frac{5}{2.1}+\frac{4}{1.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(\frac{A}{7}=\frac{7-2}{2.7}+\frac{11-7}{7.11}+\frac{14-11}{11.4}+\frac{15-14}{14.15}+\frac{28-15}{15.28}\)

\(\frac{A}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}=\frac{1}{2}-\frac{1}{28}=\frac{13}{28}\)

\(A=7.\frac{13}{28}\)

\(A=\frac{13}{4}\)