Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có là đường kính của
Mà
nội tiếp đường tròn đường kính
b.Ta có nội tiếp
là phân giác
c.Vì là đường kính của
Xét có
Mà là trực tâm
Mà thẳng hàng
Xét có:
Chung
1: góc AMB=1/2*180=90 độ
=>góc BME=90 độ
góc BCE+góc BME=90+90=180 độ
=>BMEC nội tiếp
2: Xét ΔAMB vuông tại M và ΔACE vuông tại C có
góc A chung
=>ΔAMB đồng dạng với ΔACE
=>AM/AC=AB/AE
=>AM*AE=AB*AC=6R^2
3: góc ANB=1/2*180=90 độ
Xét ΔANB vuông tại N và ΔACF vuông tại C có
góc BAN chung
=>ΔANB đồng dạng với ΔACF
=>AN/AC=AB/AF
=>AN*AF=AB*AC=AM*AE
=>AN/AE=AM/AF
=>ΔANM đồng dạng với ΔAEF
=>góc ANM=góc AEF
=>góc MEF+góc MNF=180 độ
=>MNFE nội tiếp
a: Xét (O) có
ΔBEA nội tiếp
BA là đường kính
=>ΔBEA vuông tại E
góc MCA+góc MEA=90+90=180 độ
=>MCAE nội tiếp
b: góc BFA=1/2*sđ cung BA=1/2*180=90 độ
Xét ΔBFA vuông tại F và ΔBCN vuông tai C có
góc B chung
=>ΔBFA đồng dạng với ΔBCN
=>BF/BC=BA/BN
=>BC*BA=BF*BN
Xét ΔBEA vuông tại E và ΔBCM vuông tại C có
góc EBA chung
=>ΔBEA đồng dạng với ΔBCM
=>BE/BC=BA/BM
=>BC*BA=BE*BM=BF*BN
a. Ta có:
góc AMB=90o (góc nội tiếp chắn nửa đtròn) hay AMH=90o
góc HCA=90o (gt)
⇒AMB+ACH=180o
⇒Tứ giác AMHC nội tiếp đtròn đkính AH
b) ΔOAM đều (vì OA=AM=MA=R) ⇒góc A=60o
Ta có: BMI=A(=1/2 sđMB) hay HMI=A
MHI=A (tứ giác AMHC nt)
Suy ra: HMI=MHI=A=60o
⇒ΔMIH đều
a) \(\widehat{BDA}=90^o\)(góc nội tiếp chắn nửa đường tròn)
=>\(\widehat{BDM}=90^o;\widehat{MCB}=90^o\left(gt\right)\)
\(\Rightarrow\widehat{BDM}+\widehat{MCB}=90^o+90^o=180^o\)
=> tứ giác BCMD nội tiếp (tứ giác có 2 góc đối bằng 180o)
b) \(\sin\widehat{BAD}=\frac{BD}{AB}=\frac{R}{2R}=\frac{1}{2}=\sin30^o\Rightarrow\widehat{BAD}=30^o\)
\(AD=AB.\cos\widehat{BAD}=2R.\cos30^o=2R\cdot\frac{\sqrt{3}}{2}=R\sqrt{3}\)
Xét \(\Delta\)CMA có: \(\widehat{C}=90^o\), AC=AB+CB=3R có AC=MAcosA
=> \(MA=\frac{AC}{\cos30^o}=\frac{3R}{\frac{\sqrt{3}}{2}}=2\sqrt{3}R\)
=> MD=MA-AD=\(2\sqrt{3}R-\sqrt{3}R=\sqrt{3}R\)
=> AD=MD=\(R\sqrt{3}\)=> D là trung điểm MA
=> \(\Delta\)MBA cân tại B (vì BD vừa là đường cao vừa là đường trung tuyến)
c) MA.AD=\(\left(2\sqrt{3}R\right)\cdot R\sqrt{3}=6R^2\)