K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2021

6Rnha

12 tháng 5 2020

MÌNH CŨNG KO BIẾT BẠN BIẾT CHỈ MÌNH VỚI NHA

30 tháng 4 2020

mày cũng ngu

30 tháng 4 2020

óc chó ngu

10 tháng 2 2021

a.Ta có BC là đường kính của (O)→AB⊥AC
Mà HM⊥BC

→HAC^=HMC^=90o

→HACM nội tiếp đường tròn đường kính CH

b.Ta có AHMC nội tiếp

→HAM^=HCM^=DCB^=DAB^

→AB là phân giác DAM^

c.Vì BC là đường kính của (O)→CD⊥BD→CD⊥BI

Xét ΔIBC có IM⊥BC,CD⊥BI

Mà IM∩CD=H→H là trực tâm ΔIBC→BH⊥IC→BA⊥IC
Mà AB⊥AC→I,A,C thẳng hàng

Xét ΔBDH,ΔBAI có:

Chung B^

BDH^=BAI^=90o

→ΔBDH∼ΔBAI(g.g)

→BDBA=BHBI

10 tháng 2 2021

Thanh Nguyen Phuc  : Copy thì nhớ ghi nguồn nhé , cóp lỗi hết cả bài làm rồi kìa :))

1: góc AMB=1/2*180=90 độ

=>góc BME=90 độ

góc BCE+góc BME=90+90=180 độ

=>BMEC nội tiếp

2: Xét ΔAMB vuông tại M và ΔACE vuông tại C có

góc A chung

=>ΔAMB đồng dạng với ΔACE

=>AM/AC=AB/AE

=>AM*AE=AB*AC=6R^2

3: góc ANB=1/2*180=90 độ

Xét ΔANB vuông tại N và ΔACF vuông tại C có

góc BAN chung

=>ΔANB đồng dạng với ΔACF

=>AN/AC=AB/AF

=>AN*AF=AB*AC=AM*AE

=>AN/AE=AM/AF

=>ΔANM đồng dạng với ΔAEF

=>góc ANM=góc AEF

=>góc MEF+góc MNF=180 độ

=>MNFE nội tiếp

a: Xét (O) có

ΔBEA nội tiếp

BA là đường kính

=>ΔBEA vuông tại E

góc MCA+góc MEA=90+90=180 độ

=>MCAE nội tiếp

b: góc BFA=1/2*sđ cung BA=1/2*180=90 độ

Xét ΔBFA vuông tại F và ΔBCN vuông tai C có

góc B chung

=>ΔBFA đồng dạng với ΔBCN

=>BF/BC=BA/BN

=>BC*BA=BF*BN

Xét ΔBEA vuông tại E và ΔBCM vuông tại C có

góc EBA chung

=>ΔBEA đồng dạng với ΔBCM

=>BE/BC=BA/BM

=>BC*BA=BE*BM=BF*BN

4 tháng 3 2023

Có hình ko bạn

5 tháng 5 2023

a. Ta có:

góc AMB=90o (góc nội tiếp chắn nửa đtròn) hay AMH=90o

góc HCA=90o (gt)

⇒AMB+ACH=180o

⇒Tứ giác AMHC nội tiếp đtròn đkính AH

b) ΔOAM đều (vì OA=AM=MA=R) ⇒góc A=60o

Ta có: BMI=A(=1/2 sđMB) hay HMI=A

MHI=A (tứ giác AMHC nt)

Suy ra: HMI=MHI=A=60o

⇒ΔMIH đều

 

25 tháng 4 2020

O A B D m C

a) \(\widehat{BDA}=90^o\)(góc nội tiếp chắn nửa đường tròn)

=>\(\widehat{BDM}=90^o;\widehat{MCB}=90^o\left(gt\right)\)

\(\Rightarrow\widehat{BDM}+\widehat{MCB}=90^o+90^o=180^o\)

=> tứ giác BCMD nội tiếp (tứ giác có 2 góc đối bằng 180o)

b) \(\sin\widehat{BAD}=\frac{BD}{AB}=\frac{R}{2R}=\frac{1}{2}=\sin30^o\Rightarrow\widehat{BAD}=30^o\)

\(AD=AB.\cos\widehat{BAD}=2R.\cos30^o=2R\cdot\frac{\sqrt{3}}{2}=R\sqrt{3}\)

Xét \(\Delta\)CMA có: \(\widehat{C}=90^o\), AC=AB+CB=3R có AC=MAcosA

=> \(MA=\frac{AC}{\cos30^o}=\frac{3R}{\frac{\sqrt{3}}{2}}=2\sqrt{3}R\)

=> MD=MA-AD=\(2\sqrt{3}R-\sqrt{3}R=\sqrt{3}R\)

=> AD=MD=\(R\sqrt{3}\)=> D là trung điểm MA

=> \(\Delta\)MBA cân tại B (vì BD vừa là đường cao vừa là đường trung tuyến)

c) MA.AD=\(\left(2\sqrt{3}R\right)\cdot R\sqrt{3}=6R^2\)