Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔAHM nội tiếp
AH là đường kính
Do đó: ΔAHM vuông tại M
=>HM\(\perp\)AC tại M
Xét (O) có
ΔADH nội tiếp
AH là đường kính
Do đó:ΔADH vuông tại D
=>HD\(\perp\)AB tại D
Xét ΔHAB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HM là đường cao
nên \(AM\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AM\cdot AC\)
=>AD/AC=AM/AB
Xét ΔAMD và ΔABC có
AM/AB=AD/AC
góc MAD chung
Do đó: ΔAMD đồng dạng với ΔABC
=>\(\widehat{AMD}=\widehat{ABC}\)
mà \(\widehat{AMD}+\widehat{DMC}=180^0\)(hai góc kề bù)
nên \(\widehat{DMC}+\widehat{DBC}=180^0\)
=>DMCB là tứ giác nội tiếp
a: góc BEC=góc BDC=1/2*sđ cung BC=90 độ
=>CE vuông góc AB, BD vuông góc AC
góc AEH=góc ADH=90 độ
=>AEHD nội tiếp đường tròn đường kính AH
=>I là trung điểm của AH
b: Gọi giao của AH với BC là N
=>AH vuông góc BC tại N
góc IEO=góc IEH+góc OEH
=góc IHE+góc OCE
=90 độ-góc OCE+góc OCE=90 độ
=>IE là tiếp tuyến của (O)
b: Xét ΔIBD co IB=ID
nên ΔIBD cân tại I