K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(\widehat{CHB}=90^0\)

=>ΔCHB vuông tại H

=>ΔCHB nội tiếp đường tròn đường kính CB(4)

Ta có: \(\widehat{CKB}=90^0\)

=>ΔCKB vuông tại K

=>ΔCKB nội tiếp đường tròn đường kính CB(5)

Từ (4) và (5) suy ra C,H,B,K cùng thuộc đường tròn đường kính CB

b:

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Ta có: \(\widehat{OCB}+\widehat{BCK}=\widehat{OCK}=90^0\)

\(\widehat{OCB}+\widehat{OCA}=\widehat{BCA}=90^0\)

Do đó: \(\widehat{BCK}=\widehat{OCA}\)(1)

Ta có: CHBK là tứ giác nội tiếp

=>\(\widehat{BCK}=\widehat{BHK}\left(2\right)\)

Xét ΔOAC có OC=OA

nên ΔOAC cân tại O

=>\(\widehat{OAC}=\widehat{OCA}\)(3)

Từ (1),(2),(3) suy ra \(\widehat{BHK}=\widehat{OAC}\)

mà hai góc này là hai góc ở vị trí đồng vị

nên HK//AC

 

7 tháng 12 2023

vẽ hộ hình giúp mình với phần a) Cm 2 tam giác nội tiếp

 

Xét tứ giác CHBK có

\(\widehat{CHB}+\widehat{CKB}=90^0+90^0=180^0\)

=>CHBK là tứ giác nội tiếp

=>C,H,B,K cùng thuộc một đường tròn

7 tháng 12 2023

Bạn vẽ hộ mình và cm theo tam giác nội tiếp

 

4 tháng 6 2016

 có cách này nè:

vẽ nữa (O) kia. vẽ đường kính COK.gọi giao điểm của EM vs CK là F. ta có: tam giác CEK nội tiếp (O), có CK là đường kính => tam giác CEK vuông tại E, có đường cao EF =>  = CF.CK(1)

 ta có: tam giác CMF Đồng dạng với tam giác COH(g.g) => CM/ OC = CF/CH \(\Rightarrow\)CH/CK = CF/CH \(\Rightarrow\)CH2  = CK.CF (2) => từ (1);(2)=> CE=CH. mà ta dễ dàng c/m được CE=CD. vậy CH = CD, nên H  thuộc (O;CD). mà CH vuông góc với AB. => dpcm

4 tháng 6 2016

ỦNG HỘ NHA MK TRẢ LỜI ĐẦU ĐÓ!!!

27 tháng 3 2023

Giúp mk với

góc DCA=góc DBA

góc AKB=góc AHB=90 độ

=>AHBK nội tiếp

=>góc AKB+góc AHB=180 độ

=>góc AKH=góc ABH=góc HCD

góc DAC=góc DBC=góc DIH

=>180 độ-góc DAC=180 độ-góc DIH

=>góc CAK=góc HIC

=>góc HAK=góc HIC

mà góc AKH=góc HCI

nên ΔHAK đồng dạng với ΔHIC

=>góc AHK=góc IHC

=>góc IHC+góc KHC=180 độ

=>góc KHI=180 độ

=>K,I,H thẳng hàng

22 tháng 3 2018

a, Tứ giác CMHN là hình chữ nhật

b, Ta có  O C A ^ = O A C ^

C B A ^ = A C H ^ ; A C H ^ = C M N ^

=>  O C A ^ + C M N ^ = 90 0

Vậy OC ⊥ MN

c, Ta có ∆IOC có E là trực tâm suy ra IN đi qua M và E (đpcm)

d, Ta có  E M A ^ = C M N ^ ; C M N ^ = C B A ^ => ∆EMA:∆ENB

Tương tự ∆EMH:∆EHN => EM.EN = E H 2 ngoài ra , ∆EHC vuông tại H có HD là đường cao

=>  E H 2 = ED.EC. Từ đó ta có đpcm

a: Xét ΔOBA và ΔOCA có 

OB=OC

OA chung

BA=CA

Do đó: ΔOBA=ΔOCA

Suy ra: \(\widehat{OBA}=\widehat{OCA}\)

\(\Leftrightarrow\widehat{OCA}=90^0\)

hay AC\(\perp\)OC tại C

Xét (O) có

OC là bán kính

AC\(\perp\)OC tại C

Do đó: AC là tiếp tuyến của (O)

b: Ta có: OB=OC

nên O nằm trên đường trung trực của BC(1)

Ta có: AB=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2)suy ra OA là đường trung trực của BC

hay OA\(\perp\)BC(3)

Xét (O) có

ΔBCE nội tiếp đường tròn

BE là đường kính

Do đó: ΔBCE vuông tại C

hay BC\(\perp\)CE(4)

Từ (3) và (4) suy ra CE//OA

3 tháng 9 2021

cậu làm hộ tớ câu b,c được không