K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2021

a) Tứ giác MNKC nội tiếp do bốn đỉnh đều thuộc đường tròn đường kính KC.

b) Ta có \(\Delta IMK\sim\Delta INC(g.g)\) nên \(IM.IC=IN.IK\).

c) D là trực tâm của tam giác ICK nên \(\widehat{IEK}=90^o\) , mà IK là đường kính của (O) nên E thuộc (O).

Các tứ giác NDEK, NDMI nội tiếp nên \(\widehat{MND}=\widehat{MID}=90^o-\widehat{ICK}=\widehat{DKE}=\widehat{DNE}\). Suy ra NC là phân giác của góc MNE.

d) Theo phương tích ta có \(DM.DK=DA.DB\). Áp dụng bđt AM - GM:

\(DM.DK=DA.DB\le\dfrac{\left(DA+DB\right)^2}{4}=\dfrac{AB^2}{4}\) không đổi.

Đẳng thức xảy ra khi và chỉ khi DA = DB, tức \(M\equiv I\).

Vậy...

30 tháng 5 2021

giups mk vs 

26 tháng 3 2020

Gọi C là điểm chính giữa cung AB của nửa đường tròn tâm O đường kính AB, M là điểm bất kì trên cung BC. Kẻ CH vuông góc với AM tại H, I là giao của OH và BC, MI cắt nửa đường tròn tâm O tại D

a. CMR: CM // DB

b. Xác định vị trí của M để D,H,B thẳng hàng

c. E là giao của AD và MB. CM: EC//DM

a: góc AMC=góc AHC=90 độ

=>AMHC nội tiếp

b: Đề sai rồi bạn