K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2017

qua A,P vẽ đương tron tâm C là như thế nào vậy bạn

13 tháng 2 2018

Cho đường tròn (O) và dây cung AB( AB không phải là đường kính) cố định. P là điểm di động trên đoạn AB.( P khác A,B và P khác trung điểm của AB). Đường tròn tâm C, D đi qua điểm P tiếp xúc với đường tròn (O) lần lượt tại A và B. Hai đường tròn (C) , (D). cắt nhau tại N( N khác P) . CMR:

a. ˆANP=ˆBNPANP^=BNP^ và 4 điểm O,D,C,N cùng thuộc 1 đường tròn.

b. Đường trung trực của ON luôn đi qua điểm cố định khi P di động

13 tháng 12 2023

f

23 tháng 6 2019

A B C I K D O S x

a) Ta có đuờng tròn (I) tiếp xúc với AC tại A, theo tính chất góc tạo bởi tiếp tuyến và dây thì ^DAC = ^DBA

Tuơng tự ^DAB = ^DCA. Do đó ^BDC = ^DAB + ^DAC + ^DBA + ^DCA = 2(^DAB + ^DAC) = 2.^BAC = ^BOC

Suy ra 4 điểm B,D,O,C cùng thuộc một đuờng tròn theo quỹ tích cung chứa góc (đpcm).

b) Gọi đuờng thẳng AD cắt đường tròn đi qua 4 điểm B,O,D,C tại S khác D. Ta sẽ chỉ ra S cố định.

Thật vậy, gọi Dx là tia đối của tia DB. Ta có ^ODC = ^OBC = ^OCB = ^ODx => DO là phân giác ^CDx

Ta thấy hai đuờng tròn (O) và (I) cắt nhau tại A và B nên OI vuông góc AB

Mà AK vuông góc với AB (vì (K) tiếp xúc AB tại A) nên OI // AK. Tuơng tự OK // AI

Từ đây tứ giác AIOK là hình bình hành => IK chia đôi OA. Cũng dễ thấy IK là trung trực của AD

Theo đó IK chứa đuờng trung bình của \(\Delta\)AOD => IK // OD. Mà IK vuông góc AD nên OD vuông góc AD

Kết hợp với OD là phân giác của ^CDx => AD là phân giác của ^BDC (do ^CDx và ^BDC bù nhau)

Hay DS là phân giác của ^BDC. Lại có ^BDC là góc nội tiếp đuờng tròn đi qua B,D,O,C

=> S là điểm chính giữa (BC không chứa O của đuờng tròn (BOC)

Vì B,O,C cố định nên điểm chính giữa (BC không chứa O của (BOC) cố định => S cố định

Vậy AD luôn đi qua S cố định (đpcm).