K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2020

A D C E V L O K B

25 tháng 4 2020

a.Vì  DC,DA là tiếp tuyến của (O) \(\Rightarrow DC=DA\)

Tương tự \(EC=EB\Rightarrow DE=DC+CE=AD+BE\)

Mà EC,EB là tiếp tuyến của (O) \(\Rightarrow EC\perp OC,EB\perp OC\)

=> C,O,B,E cùng thuộc một đường tròn đường kính OE

b ) Ta có : EB,EC là tiếp tuyến của (O) \(\Rightarrow EO\perp CB=L\)

Mà VL là đường kính của (O)

\(\Rightarrow LK.LV=CL^2=LO.LE\)

c.Ta có :

\(\widehat{VCL}=\widehat{CBV}=\widehat{ECV}\) vì EC là tiếp tuyến của (O)

\(\Rightarrow CV\) là phân giác \(\widehat{ECL}\)

\(\Rightarrow\frac{VL}{VE}=\frac{CL}{CE}\)

Lại có : \(\Delta CLE~\Delta OCE\left(g.g\right)\)

\(\Rightarrow\frac{CL}{CE}=\frac{OC}{OE}\)

Lại có : \(OC^2=OL.OE\Rightarrow\frac{OC}{OE}=\frac{OL}{OC}\)

\(\Rightarrow\frac{VL}{VE}=\frac{OC}{OE}=\frac{OL}{OC}\)

\(\Rightarrow\frac{VL}{VE}=\frac{OL}{R}\)

\(\Rightarrow\frac{VL}{VE}+\frac{2VL}{KV}=\frac{OL}{R}+\frac{2VL}{KV}\)

\(\Rightarrow\frac{VL}{VE}+\frac{2VL}{KV}=\frac{OL}{R}+\frac{2VL}{2R}\)

\(\Rightarrow\frac{VL}{VE}+\frac{2VL}{KV}=\frac{OL}{R}+\frac{VL}{R}\)

\(\Rightarrow\frac{VL}{VE}+\frac{2VL}{KV}=\frac{OL+VL}{R}\)

\(\Rightarrow\frac{VL}{VE}+\frac{2VL}{KV}=\frac{R}{R}=1\)

\(\Rightarrow\frac{1}{VL}-\frac{1}{VE}=\frac{2}{KV}\)

   
24 tháng 12 2018

O A B x y C C E F D I H K

a, Theo t/c tiếp tuyến của đường tròn

 EA = EC

 FC = FB

=>  EC + CF = EA + BF

=> EF  = AE + BF

b, Xét \(\Delta\)ABC có OA = OB = OC (bán kính)

=> \(\Delta\)ABC vuông tại C

=> AC \(\perp\)BC

Xét \(\Delta\)DAB vuông tại  A có AC là đường cao

=> \(AD^2=DC.DB\)(Hệ thức lượng)

c,Chưa ra, mai nghĩ ra thì giải cho ^^

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai đoạn...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0
26 tháng 7 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) CE và EB là 2 tiếp tuyến cắt nhau tại E

⇒ EC = EB và CB ⊥ OE

Tương tự, DC và DA là 2 tiếp tuyến cắt nhau tại D

⇒ DC = DA và AC ⊥ OD

Khi đó: AD + BE = DC + EC = DE

a: Xét tứ giác OBDM có

góc OBD+góc OMD=180 độ

=>OBDM là tư giác nội tiếp

c: Xét ΔKOB và ΔKFE có

góc KOB=góc KFE

góc OKB=góc FKE

=>ΔKOB đồng dạng với ΔKFE
=>KO/KF=KB/KE

=>KO*KE=KB*KF