K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

ΔACB nội tiếp

AB là đường kính

=>ΔACB vuông tại C

ΔOCD cân tại O

mà OI là đường cao

nên I là trung điểm của CD

=>IC=ID=CD/2=8cm

Xét ΔCAB vuông tại C cso CI là đường cao

nên CI^2=IA*IB

=>8^2=6*IB

=>IB=64/6=32/3(cm)

AB=IB+IA=32/3+6=50/3(cm)

=>R=50/3:2=25/3(cm)

4 tháng 9 2017
trả lời hay lắm bạn
10 tháng 12 2023

a: kẻ OH\(\perp\)CD tại H

Ta có: OH\(\perp\)CD

AP\(\perp\)CD

QB\(\perp\)CD

Do đó: OH//AP//QB

Xét hình thang ABQP(AP//QB) có

O là trung điểm của AB

OH//AP//BQ

Do đó: H là trung điểm của PQ

=>HP=HQ

Ta có: ΔOCD cân tại O

mà OH là đường cao

nên H là trung điểm của CD

=>HC=HD

Ta có: HC+CP=HP

HD+DQ=HQ

mà HP=HQ và HC=HD

nên CP=DQ

b: Ta có: ΔOCD vuông tại O

=>\(OC^2+OD^2=CD^2\)

=>\(CD^2=R^2+R^2=2R^2\)

=>\(CD=R\sqrt{2}\)

Xét ΔOAC có OA=OC=AC=R

nên ΔOAC đều

=>\(\widehat{CAO}=60^0\)

=>\(\widehat{CAB}=60^0\)

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét ΔCAB vuông tại C có \(sinCAB=\dfrac{CB}{AB}\)

=>\(\dfrac{CB}{2R}=sin60=\dfrac{\sqrt{3}}{2}\)

=>\(CB=R\sqrt{3}\)

 

21 tháng 12 2020

PS. Em đã làm được rồi ạ.

NV
21 tháng 12 2020

\(ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

\(\left\{{}\begin{matrix}\widehat{ACB}+\widehat{BCH}=90^0\\\widehat{CBH}+\widehat{BCH}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{ACB}=\widehat{CBH}\)

\(\Rightarrow\widehat{ABC}=\widehat{CBH}\)

NV
12 tháng 9 2021

b.

Áp dụng định lý Pitago trong tam giác vuông COI:

\(CI=\sqrt{OC^2+OI^2}=\sqrt{R^2+\left(\dfrac{R}{3}\right)^2}=\dfrac{R\sqrt{10}}{3}\)

Do 2 tam giác COI và CED đồng dạng

\(\Rightarrow\dfrac{CE}{CO}=\dfrac{CD}{CI}\Rightarrow CE=\dfrac{CD.CO}{CI}=\dfrac{2R.R}{\dfrac{R\sqrt{10}}{3}}=\dfrac{3R\sqrt{10}}{5}\)

NV
12 tháng 9 2021

undefined

14 tháng 7 2020

Jrouf8o7o98auoxur9hc9keuoa

a: ΔOAB cân tại O

mà OI là đường trung tuyến

nên OI vuông góc AB

I là trung điểm của AB

=>IA=IB=16/2=8cm

ΔOIA vuông tại I

=>OA^2=OI^2+IA^2

=>OI^2=10^2-8^2=36

=>OI=6(cm)

b: OM=OI+IM

=>6+IM=10

=>IM=4cm

ΔMIA vuông tại I

=>MI^2+IA^2=MA^2

=>\(MA=\sqrt{4^2+8^2}=4\sqrt{5}\left(cm\right)\)