Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi O’ là tâm của đường tròn đường kính OA.
Gọi R và r lần lượt là bán kính đường tròn tâm O và tâm O’.
Suy ra, hai đường tròn đã cho tiếp xúc trong với nhau.
b) +) Xét đường tròn (O’) có A, O, C là ba điểm cùng thuộc đường tròn và OA là đường kính nên tam giác AOC vuông tại C.
⇒ OC ⊥ AD
+) Xét đường tròn tâm (O) có A, D là hai điểm thuộc đường tròn nên OA = OD
⇒ ΔAOD cân tại O mà OC ⊥ AD
⇒ OC là đường trung tuyến của ΔAOD
⇒ C là trung điểm của AD
⇒ AC = CD
Hướng dẫn giải:
a) Gọi O' là tâm của đường tròn đường kính OA thì O'A=O'O.
Ta có OO'=OA-O'A hay d=R-r nên đường tròn (O) và đường tròn (O') tiếp xúc trong.
b) Tam giác CAO có cạnh OA là đường kính của đường tròn ngoại tiếp nên ΔCAO vuông tại C
⇒OC⊥AD
⇒CA=CD (đường kính vuông góc với một dây).
Vẽ OM⊥AB⇒OM⊥CD.
Xét đường tròn (O;OC) (đường tròn nhỏ) có OM là một phần đường kính, CD là dây và OM⊥CD nên M là trung điểm của CD hay MC=MD (định lý)
Xét đường tròn (O;OA) (đường tròn lớn) có OM là một phần đường kính, AB là dây và OM⊥AB nên M là trung điểm của AB hay MA=MB (định lý)
Ta có MA=MB và MC=MD (cmt) nên trừ các đoạn thẳng theo vế với vế ta được MA−MC=MB−MD ⇒AC=BD.
Nhận xét. Kết luận bài toán vẫn được giữ nguyên nếu C và D đổi chỗ cho nhau.
á em lộn
a) Cho hai đường tròn (O; R)(O; R) và (O′; r)(O′; r) với R>r. Nếu OO′=R−rOO′=R−r thì hai đường tròn tiếp xúc trong.
b) +) Nếu tam giác có ba đỉnh nằm trên đường tròn và có 1 cạnh là đường kính của đường tròn đó thì tam giác đó là tam giác vuông.
+) Trong một đường tròn, đường kính vuông góc với dây thì đi qua trung điểm của dây đó.
(góc nội tiếp và góc ở tâ của đường tròn (O'))
Độ dài cung M A ⏜ là:
* Xét tam giác ACO có CO’ là đường trung tuyến và
Suy ra, tam giác ACO vuông tại C
⇒ AC ⊥ CO
* Xét tam giác AOD có AO = OD = R
Suy ra tam giác AOD cân tại O.
Lại có OC là đường cao nên đồng thời là đường trung tuyến
⇒ C là trung điểm AD hay AC = CD. (điều phải chứng minh)