Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
MB,MA là tiếp tuyến
nên MB=MA
Xét (O') cos
MA,MC là tiếp tuyến
nên MA=MC=>MA=BC/2
Xét ΔABC có
AM la trung tuyến
AM=BC/2
Do đó; ΔABC vuông tại A
b: Gọi H là trung điểm của OO'
Xét hình thang OBCO' có
M,H lần lượt là trung điểm của BC,OO'
nên MH là đường trung bình
=>MH//BO//CO'
=>MH vuông góc với BC
=>BC là tiếp tuyến của (H)
a) Theo tính chất hai tiếp tuyến cắt nhau ta có IA = IB = IC.
Do đó tam giác ABC vuông tại A.
Lại có \(IO_1\perp AB;IO_2\perp AC\) nên tam giác \(IO_1O_2\) vuông tại I.
b) Đầu tiên ta chứng minh kết quả sau: Cho hai đường tròn (D; R), (E; r) tiếp xúc với nhau tại A. Tiếp tuyến chung BC (B thuộc (D), C thuộc (E)). Khi đó \(BC=2\sqrt{Rr}\).
Thật vậy, kẻ EH vuông góc với BD tại H. Ta có \(DH=\left|R-r\right|;DE=R+r\) nên \(BC=EH=\sqrt{DE^2-DH^2}=2\sqrt{Rr}\).
Trở lại bài toán: Giả sử (O; R) tiếp xúc với BC tại M.
Theo kết quả trên ta có \(BM=2\sqrt{R_1R};CM=2\sqrt{RR_2};BC=2\sqrt{R_1R_2}\).
Do \(BM+CM=BC\Rightarrow\sqrt{R_1R}+\sqrt{R_2R}=\sqrt{R_1R_2}\Rightarrow\dfrac{1}{\sqrt{R}}=\dfrac{1}{\sqrt{R_1}}+\dfrac{1}{\sqrt{R_2}}\).
P/s: Hình như bạn nhầm đề
a: Xét (O) có
MB,MA là các tiếp tuyến
Do đó: MB=MA và MO là phân giác của \(\widehat{BMA}\)
Xét (O') có
MA,MC là các tiếp tuyến
Do đó: MA=MC và MO' là phân giác của \(\widehat{AMC}\)
Ta có: MB=MA
MA=MC
Do đó: MB=MC
=>M là trung điểm của BC
Xét ΔABC có
AM là đường trung tuyến
\(AM=\dfrac{BC}{2}\)
Do đó: ΔABC vuông tại A
b: Ta có: \(\widehat{BMC}=\widehat{BMA}+\widehat{CMA}\)
=>\(\widehat{BMC}=2\left(\widehat{OMA}+\widehat{O'MA}\right)\)
=>\(2\cdot\widehat{OMO'}=180^0\)
=>\(\widehat{OMO'}=90^0\)
Xét ΔOMO' vuông tại M có MA là đường cao
nên \(MA^2=OA\cdot O'A\)
=>\(MA=\sqrt{9\cdot4}=6\left(cm\right)\)
=>\(BC=2\cdot6=12\left(cm\right)\)
c: Gọi I là trung điểm của O'O
ΔOMO' vuông tại M
=>ΔO'MO nội tiếp đường tròn đường kính O'O
=>ΔO'MO nội tiếp (I)
Xét hình thang OBCO' có
M,I lần lượt là trung điểm của BC,O'O
Do đó: MI là đường trung bình của hình thang OBCO'
=>MI//OB//O'C
=>MI\(\perp\)BC
Xét (I) có
IM là bán kính
BC\(\perp\)IM tại M
Do đó:BC là tiếp tuyến của đường tròn đường kính O'O