K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2021

a) Ta có: \(\angle ANM+\angle ABM=90+90=180\Rightarrow\) ABMN nội tiếp

b) Ta có: \(cos\angle BOA=\dfrac{OB}{OA}=\dfrac{R}{2R}=\dfrac{1}{2}\Rightarrow\angle BOA=60\)

Ta có: \(sin\angle BOH=sin60=\dfrac{\sqrt{3}}{2}\Rightarrow\dfrac{BH}{OB}=\dfrac{\sqrt{3}}{2}\)

\(\Rightarrow BH=\dfrac{\sqrt{3}}{2}OB=\dfrac{\sqrt{3}}{2}R\)

c) Ta có: \(OB^2=BA.BE\Rightarrow\dfrac{BO}{BE}=\dfrac{BA}{BO}\Rightarrow\dfrac{2BM}{BE}=\dfrac{BA}{\dfrac{BC}{2}}\)

\(\Rightarrow\dfrac{2BM}{BE}=\dfrac{2BA}{BC}\Rightarrow\dfrac{BM}{BE}=\dfrac{BA}{BC}\)

Xét \(\Delta MBE\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{BM}{BE}=\dfrac{BA}{BC}\\\angle MBE=\angle ABC=90\end{matrix}\right.\)

\(\Rightarrow\Delta MBE\sim\Delta ABC\left(c-g-c\right)\Rightarrow\angle BME=\angle BAC=\angle CMN\) (ABMN nội tiếp)

mà B,M,C thẳng hàng \(\Rightarrow\) E,M,N thẳng hàngundefined

6 tháng 6 2021

a)Vì AB tx (O)

`=>hat{ABO}=90^o`

Vì `MN bot AC`

`=>hat{ANM}=90^o`

Xét tg ABMN có:

`hat{ANM}+hat{ABO}=180^o`

`=>` tg ABMN nt

b)Xét tam giác vg ABO có:

`sinhat{BAO}=(AO)/(BO)=1/2`

`=>hat{BAO}=30^o`

`=>hat{BOA}=90^o-30^o=60^o`

Áp dụng đl pytago vào tam giác vg ABO

`=>AB^2=AO^2-BO^2=3R^2`

`=>AB=sqrt3R=3sqrt3`

Áp dụng htl vào tam giác vuong ABO có đg cao là BH

`=>BH.AO=AB.BO`

`=>BH.2R=sqrt3R.R=sqrt3R^2`

`=>BH=(sqrt3R)/2=(3sqrt3)/2`

24 tháng 10 2017

mk ko bt 123

24 tháng 10 2017

123 làm được rồi help mình câu 4

6 tháng 12 2017

Câu c.

Gọi K là trung điểm của BH

Chỉ ra K là trực tâm của tam giác BMI

Chứng minh MK//EI

Chứng minh M là trung điểm của BE (t.c đường trung bình)

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

22 tháng 5 2016

a) tự lm

b) ta có  BAO +BKO=90+90=180

=>...............

c)

22 tháng 5 2016

c) vì OK vg vs BC=>..............................................

d)

27 tháng 6 2020

Từ một điểm A nằm bên ngoài đường tròn ( O ), kẻ các tiếp tuyến AB, AC với đường tròn ( B,C là các tiếp điểm )

a) Chứng minh rằng ABOC là tứ giác nội tiếp

b)Cho bán kính đường tròn ( O ) bằng 3cm, độ dài đoạn thẳng OA bằng 5cm. Tính độ dài đoạn thẳng BC

c) Gọi ( K ) là đường tròn qua A và tiếp xúc với đường thẳng BC tạo C. Đường trknf (K) và đường tròn (O ) cắt nhau tại điểm thứ hai là M. Chứng minh rằng đường thẳng BM đi qua trung điểm của đoạn thẳng AC