Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
CM,CA là tiếp tuyến
Do đó: CM=CA và OC là phân giác của \(\widehat{AOM}\)
=>\(\widehat{COM}=\dfrac{1}{2}\cdot\widehat{MOA}\)
Xét (O) có
DM,DB là tiếp tuyến
Do đó: DM=DB và OD là phân giác của \(\widehat{MOB}\)
=>\(\widehat{MOD}=\dfrac{1}{2}\cdot\widehat{MOB}\)
\(\widehat{COD}=\widehat{COM}+\widehat{DOM}\)
\(=\dfrac{1}{2}\cdot\widehat{MOA}+\dfrac{1}{2}\cdot\widehat{MOB}\)
\(=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
CD=CM+MD
mà CM=CA và DM=DB
nên CD=CA+DB
b: Xét ΔOCD vuông tại O có OM là đường cao
nên \(OM^2=CM\cdot MD\)
=>\(AC\cdot BD=R^2\)
c: CM=CA
OM=OA
Do đó: CO là đường trung trực của AM
=>CO\(\perp\)AM tại E
DM=DB
OM=OB
Do đó: OD là đường trung trực của MB
=>OD\(\perp\)MB tại F
Xét tứ giác MEOF có
\(\widehat{MEO}=\widehat{MFO}=\widehat{FOE}=90^0\)
=>MEOF là hình chữ nhật
=>EF=OM=R
a, Theo tc 2 tiếp tuyến cắt nhau: AB=AC nên A∈trung trực BC
Mà OB=OC=R nên O∈trung trực BC
Do đó OA là trung trực BC hay OA⊥BC
Áp dụng HTL: \(OA\cdot OH=OB^2=R^2\)
b, \(\widehat{BCD}=90^0\) (góc nt chắn nửa đg tròn) nên CD⊥BC
Mà OA⊥BC nên CD//AO
b, AO//CD nên \(\widehat{AOB}=\widehat{CDK}\) (đồng vị)
Do đó \(\Delta AOB\sim\Delta CDK\left(g.g\right)\)
\(\Rightarrow\dfrac{AB}{CK}=\dfrac{AO}{CO}\Rightarrow AB\cdot CO=CK\cdot AO\)
Mà \(AC=AB\Rightarrow AC\cdot CO=CK\cdot AO\)
c, Tiếp tuyến tại D của (O) cắt AC tại E
Theo tc 2 tt cắt nhau: \(AC=AB;CE=ED\Rightarrow\dfrac{AC}{CE}=\dfrac{AB}{ED}\)
Lại có AB//CK//DE(⊥BD) nên \(\dfrac{AC}{CE}=\dfrac{AI}{ID};\widehat{BAI}=\widehat{IDE}\) (so le trong)
\(\Rightarrow\dfrac{AB}{ED}=\dfrac{AI}{ID}\)
Do đó \(\Delta ABI\sim\Delta DEI\left(c.g.c\right)\)
\(\Rightarrow\widehat{AIB}=\widehat{EID}\)
Mà 2 góc này ở vị trí đối đỉnh và A,I,D thẳng hàng nên B,I,E thẳng hàng
Talet: \(\dfrac{CI}{ED}=\dfrac{AI}{AD};\dfrac{IK}{ED}=\dfrac{BK}{BD};\dfrac{AI}{AD}=\dfrac{BK}{BD}\)
\(\Rightarrow\dfrac{CI}{ED}=\dfrac{IK}{ED}\Rightarrow CI=IK\) hay I là trung điểm CK
\(\Rightarrow\dfrac{S_{BIK}}{S_{BCK}}=\dfrac{IK}{CK}=\dfrac{1}{2}\)
Mà \(\dfrac{S_{CHK}}{S_{BCK}}=\dfrac{CH}{BC}=\dfrac{1}{2}\) (H là trung điểm BC, bạn tự cm)
Vậy \(S_{BIK}=S_{CHK}\)