K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2023

a: Xét (O) có

CM,CA là tiếp tuyến

Do đó: CM=CA và OC là phân giác của \(\widehat{AOM}\)

=>\(\widehat{COM}=\dfrac{1}{2}\cdot\widehat{MOA}\)

Xét (O) có

DM,DB là tiếp tuyến

Do đó: DM=DB và OD là phân giác của \(\widehat{MOB}\)

=>\(\widehat{MOD}=\dfrac{1}{2}\cdot\widehat{MOB}\)

\(\widehat{COD}=\widehat{COM}+\widehat{DOM}\)

\(=\dfrac{1}{2}\cdot\widehat{MOA}+\dfrac{1}{2}\cdot\widehat{MOB}\)

\(=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

CD=CM+MD

mà CM=CA và DM=DB

nên CD=CA+DB

b: Xét ΔOCD vuông tại O có OM là đường cao

nên \(OM^2=CM\cdot MD\)

=>\(AC\cdot BD=R^2\) 

c: CM=CA

OM=OA

Do đó: CO là đường trung trực của AM

=>CO\(\perp\)AM tại E

DM=DB

OM=OB

Do đó: OD là đường trung trực của MB

=>OD\(\perp\)MB tại F

Xét tứ giác MEOF có

\(\widehat{MEO}=\widehat{MFO}=\widehat{FOE}=90^0\)

=>MEOF là hình chữ nhật

=>EF=OM=R

16 tháng 11 2021

a, Theo tc 2 tiếp tuyến cắt nhau: AB=AC nên A∈trung trực BC

Mà OB=OC=R nên O∈trung trực BC

Do đó OA là trung trực BC hay OA⊥BC

Áp dụng HTL: \(OA\cdot OH=OB^2=R^2\)

b, \(\widehat{BCD}=90^0\) (góc nt chắn nửa đg tròn) nên CD⊥BC

Mà OA⊥BC nên CD//AO

16 tháng 11 2021

b, AO//CD nên \(\widehat{AOB}=\widehat{CDK}\) (đồng vị)

Do đó \(\Delta AOB\sim\Delta CDK\left(g.g\right)\)

\(\Rightarrow\dfrac{AB}{CK}=\dfrac{AO}{CO}\Rightarrow AB\cdot CO=CK\cdot AO\)

Mà \(AC=AB\Rightarrow AC\cdot CO=CK\cdot AO\)

c, Tiếp tuyến tại D của (O) cắt AC tại E

Theo tc 2 tt cắt nhau: \(AC=AB;CE=ED\Rightarrow\dfrac{AC}{CE}=\dfrac{AB}{ED}\)

Lại có AB//CK//DE(⊥BD) nên \(\dfrac{AC}{CE}=\dfrac{AI}{ID};\widehat{BAI}=\widehat{IDE}\) (so le trong)

\(\Rightarrow\dfrac{AB}{ED}=\dfrac{AI}{ID}\)

Do đó \(\Delta ABI\sim\Delta DEI\left(c.g.c\right)\)

\(\Rightarrow\widehat{AIB}=\widehat{EID}\)

Mà 2 góc này ở vị trí đối đỉnh và A,I,D thẳng hàng nên B,I,E thẳng hàng

Talet: \(\dfrac{CI}{ED}=\dfrac{AI}{AD};\dfrac{IK}{ED}=\dfrac{BK}{BD};\dfrac{AI}{AD}=\dfrac{BK}{BD}\)

\(\Rightarrow\dfrac{CI}{ED}=\dfrac{IK}{ED}\Rightarrow CI=IK\) hay I là trung điểm CK

\(\Rightarrow\dfrac{S_{BIK}}{S_{BCK}}=\dfrac{IK}{CK}=\dfrac{1}{2}\)

Mà \(\dfrac{S_{CHK}}{S_{BCK}}=\dfrac{CH}{BC}=\dfrac{1}{2}\) (H là trung điểm BC, bạn tự cm)

Vậy \(S_{BIK}=S_{CHK}\)