Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) nối OM;ON .vì K là trung điểm của MN=>KN=KM=KC=1/2MN( TAM GIÁC VUÔNG ĐƯỜNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN = NỬA CẠNH HUYỀN)
VÌ OM=ON( CÙNG =R) ==> tam giác OMN cân tại O . XÉT tam giác OMN cân tại O CÓ OK là đường trung tuyến nên nó đồng thời là đường cao ) ==> OK vuông góc với MN ==> TAM giác OKN vuông tại K
XÉT TAM GIÁC OKN vuông tại K .THEO PY-TA GO TA CÓ \(OK^2+KN^2=ON^2\)
MÀ KN=KC (chứng minh trên) ==>\(OK^2+KC^2=ON^2\)
MÀ ON ko đổi ( vì bằng bán kính đường tròn tâm O) ==> \(OK^2+KC^2\) ko đổi
Áp dụng công thức tính đường trung tuyến: KI=\(\sqrt{\frac{2\left(KC^2+KO^2\right)-CO^2}{4}}\)
THEO CÂU a: KC^2+KO^2=ON^2
=>KI=\(\sqrt{\frac{2\cdot ON^2-CO^2}{4}}=\sqrt{\frac{ON^2+\left(ON^2-CO^2\right)}{4}}=\sqrt{\frac{ON^2+CN^2}{4}}\)=\(\frac{\sqrt{R^2+OA^2-CO^2}}{2}=\sqrt{\frac{R^2+AC^2}{4}}\)
Vì C cố định nên khoảng cách KI là cố định
vậy khi M di động trên (O;R) thì K di động trên 1 đường tròn cố định tâm I là trung điểm của CO
a) Vì \(A,M,B\in\left(O\right)\); AB là đường kính
\(\Rightarrow\widehat{AMB}=90^0\)
\(\Rightarrow AM\perp MB\)
Xét tam giác ANB có: BM vừa là đường cao vừa là đường trung bình
\(\Rightarrow\Delta ANB\)cân tại B
\(\Rightarrow NB=BA\)
\(\Rightarrow N\in\left(C;\frac{BA}{2}\right)\)cố định
b) Vì BM là đường cao của tam giác ABN cân tại B
=> BM là phân giác góc ABN
=> góc ABM= góc NBM
Xét tam giác ARB và tam giác NRB có:
\(\hept{\begin{cases}BRchung\\\widehat{ABM}=\widehat{NBM}\left(cmt\right)\\AB=NB\end{cases}\Rightarrow\Delta ARB=\Delta NRB\left(c-g-c\right)}\)
\(\Rightarrow\widehat{RAB}=\widehat{RNB}=90^0\)
\(\Rightarrow RN\perp BN\)
\(\Rightarrow RN\)là tiếp tuyến của (C)
c) Ta có: A,P,B thuộc (O); AB là đường kính
\(\Rightarrow\widehat{APB}=90^0\)
\(\Rightarrow AP\perp BP\)
\(\Rightarrow RN//AP\)( cùng vuông góc với NB )
Xét tam giác NAB có: \(\hept{\begin{cases}MB\perp AN\\AP\perp BN\end{cases}}\); AP cắt BM tại Q
\(\Rightarrow Q\)là trực tâm tam giác NAB
\(\Rightarrow NQ\perp AB\)
=> NQ // AR( cùng vuông góc với AB)
Xét tứ giác ARNQ có:
\(\hept{\begin{cases}AR//NQ\left(cmt\right)\\RN//AP\left(cmt\right)\end{cases}\Rightarrow ARNQ}\)là hình bình hành
Mà 2 đường chéo RQ và AN vuông góc với nhau
=> ARNQ là hình thoi