Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, HS tự chứng minh
b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA
c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AK ⊥ BN nên có ĐPCM
Chứng minh tứ giác EKBH nội tiếp, từ đó có A K F ^ = A B M ^
d, Lấy P và G lần lượt là trung điểm của AC và OP
Chứng minh I thuộc đường tròn (G, GA)
d) Gọi I là trung điểm BC,AI cắt EF tại K.H là hình chiếu vuông góc của K trên BC. Chứng minh: AH luôn đi qua một điểm cố định
a, Xét tứ giác MEOF có \(\widehat{MEO}=\widehat{MFO}=90^0\)
=> Tứ giác MEOF nội tiếp (t/c)
=> 4 điểm M,E,O,F cùng thuộc đường tròn đường kính MO (1)
Xét tứ giác AFOM có : \(\widehat{MAO}=\widehat{MFO}=90^0\)
=> Tứ giác AFOM nội tiếp (t/c)
=> 4 điểm M,A,O,F cùng thuộc đường tròn đường kính MO (2)
Từ (1) và (2) => Năm điểm A, M, E, O, F cùng thuộc đường tròn đường kính MO
1, vì ME vuông góc vs AB tại E ⇒AEM=90\(^0\)(1))
vì MF vuông góc vs AC tại F ⇒AFM=90\(^0\)(2)
lại có:A là điểm chính giữa cảu cug BC ⇒góc AOM =90\(^0\)(3)
từ (1),(2),(3)⇒góc AME=góc AFM=góc AOM(=90\(^0\)) cùng nhìn cạnh AM
⇒năm điểm A,E,F,O,M cùng nằm trên một đường tròn