K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2021

1, vì ME vuông góc vs AB tại E ⇒AEM=90\(^0\)(1))

   vì MF vuông góc vs AC tại F ⇒AFM=90\(^0\)(2)

lại có:A là điểm chính giữa cảu cug BC ⇒góc AOM =90\(^0\)(3)

từ (1),(2),(3)⇒góc AME=góc AFM=góc AOM(=90\(^0\)) cùng nhìn cạnh AM

⇒năm điểm A,E,F,O,M cùng nằm trên một đường tròn

 

8 tháng 9 2018

a, HS tự chứng minh

b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA

c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AKBN nên có ĐPCM

Chứng minh tứ giác EKBH nội tiếp, từ đó có  A K F ^ = A B M ^

d, Lấy P và G lần lượt là trung điểm của AC và OP

Chứng minh I thuộc đường tròn (G, GA)

18 tháng 11

d) Gọi I là trung điểm BC,AI cắt EF tại K.H là hình chiếu vuông góc của K  trên BC. Chứng minh: AH luôn đi qua một điểm cố định

a, Xét tứ giác MEOF có \(\widehat{MEO}=\widehat{MFO}=90^0\)

=> Tứ giác MEOF nội tiếp (t/c)

=> 4 điểm M,E,O,F cùng thuộc đường tròn đường kính MO (1)

Xét tứ giác AFOM có : \(\widehat{MAO}=\widehat{MFO}=90^0\)

=> Tứ giác AFOM nội tiếp (t/c)

=> 4 điểm M,A,O,F cùng thuộc đường tròn đường kính MO (2)

Từ (1) và (2) => Năm điểm A, M, E, O, F cùng thuộc  đường tròn đường kính MO