Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AT là tiếp tuyến
AT' là tiếp tuyến
Do đó: AT=AT'
hay A nằm trên đường trung trực của TT'(1)
Ta có: OT=OT'
nên O nằm trên đường trung trực của TT'(2)
Từ (1) và (2) suy ra AO là đường trung trực của TT'
Xét ΔOTA vuông tại T có TI là đường cao
nên \(AT^2=AI\cdot AO\)
b: Xét ΔAIJ vuông tại I và ΔAHO vuông tại H có
\(\widehat{HAO}\) chung
Do đó: ΔAIJ\(\sim\)ΔAHO
Hình bạn tự vẽ rồi nhâ
từ câu a) ta thấy AB là tiếp tuyến của đường tròn (J) đường kính CD
gọi P,Q lần lượt là giao của AD và (O),BC và (J)
có góc APB=CQD=90 độ (góc nt chắn nx đg tròn)
=>góc DPB= góc BQD=90 độ
=>tugiac BQPD là tgnt =>góc PDB= góc PQI(1)
Vì AC//BD nên góc PDB=góc IAC(2)
từ (1) và (2) =>góc PQI= góc IAC
=>tgPQI đồng dạng tgCAI(g.g)
=>PI/CI=QI/AI
=>IP.IA=IC.IQ
=>phương tích của điểm I đối vs (O) và (J) = nhau
=>I nằm trên trục đẳng phương EF của 2 đg tròn
Vậy I,E,F thằng hàng(dpcm)