K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2021

ý a dễ

b/ Ta có IM=IN (đề bài) => OI vuông góc AN => ^AIO=90

Ta lại có ^ABO=^ACO=90 (AB,AC là tiếp tuyến)

=> B,I,C đều nhìn AO dưới 1 góc 90 độ => B,I,C cùng nằm trên 1 đường tròn đường kính AO => B,I,C,O cùng nằm trên 1 đường tròn

c/

Ta có AB=AC => số đo cung AB thuộc đường tròn đk AO = số đo cung AC thuộc đường tròn đk AO (1)

số đo ^AIB=1/2 số đo cung AB (góc nội tiếp) (2)

số đo ^AIC=1/2 sso đo cung AC (góc nội tiếp) (3)

Từ (1) (2) và (3) => ^AIB=^AIC => AI là phân giác của góc BIC

1 tháng 5 2021

@Bakura : Câu a với b mình chứng minh được rồi bạn, mình cần câu c. Bạn biết làm câu c thì giúp mình với ạ, cảm ơn bạn.

11 tháng 3 2020

a/ Ta có IM=IN (đề bài) => OI vuông góc AN => ^AIO=90

Ta lại có ^ABO=^ACO=90 (AB,AC là tiếp tuyến)

=> B,I,C đều nhìn AO dưới 1 góc 90 độ => B,I,C cùng nằm trên 1 đường tròn đường kính AO => B,I,C,O cùng nằm trên 1 đường tròn

b/

Ta có AB=AC => số đo cung AB thuộc đường tròn đk AO = số đo cung AC thuộc đường tròn đk AO (1)

số đo ^AIB=1/2 số đo cung AB (góc nội tiếp) (2)

số đo ^AIC=1/2 sso đo cung AC (góc nội tiếp) (3)

Từ (1) (2) và (3) => ^AIB=^AIC => AI là phân giác của góc BIC

2 tháng 5 2020

Nếu cậu chưa thấy hình thì vào thống kê hỏi đáp của tui là thấy nha

~Study well~

:]

Toán lớp 9 cho siêu khó. Ai giải giúp em với sáng mai nộp mà còn kẹt lại 3 bài này @@Bài 1 : Ba đường tròn tâm I, K, H có bán kính bằng nhau và bằng R cùng đi qua một điểm O và từng đôi một cắt nhau tại điểm thứ hai là A, B, C. Chứng minh rằng :a) A, I, H, B là 4 đỉnh của 1 hình bình hànhb) Đường tròn đi qua 3 điểm A, B, C cũng có bán kính RBài 2 : Cho đường tròn tâm O, đường kính AB và một...
Đọc tiếp

Toán lớp 9 cho siêu khó. Ai giải giúp em với sáng mai nộp mà còn kẹt lại 3 bài này @@


Bài 1 : Ba đường tròn tâm I, K, H có bán kính bằng nhau và bằng R cùng đi qua một điểm O và từng đôi một cắt nhau tại điểm thứ hai là A, B, C. Chứng minh rằng :
a) A, I, H, B là 4 đỉnh của 1 hình bình hành
b) Đường tròn đi qua 3 điểm A, B, C cũng có bán kính R

Bài 2 : Cho đường tròn tâm O, đường kính AB và một điểm M di động trên nửa đường tròn. Vẽ đường tròn tâm E tiếp xúc với (O) tại M, tiếp xúc AB tại N. (E) cắt AM, MB tại điểm thứ hai lần lượt là C, D
a) Chứng minh CD // AB
b) Kẻ bán kính OK của (O) vuông góc với AB (K thuộc nửa mặt phẳng bờ AB không chứa M). Chứng minh M, N, K thẳng hàng

Bài 3 : Cho M, N là các giao điểm của hai đường tròn (O)(O'). Đường thẳng OM cắt (O), (O') lần lượt tại điểm thứ hai là A, B. Đường thẳng O'M cắt (O), (O') lần lượt tại điểm thứ hai là C, D. Chứng minh : ba đường thẳng AC, BD, MN đồng quy tại 1 điểm

0
19 tháng 4 2020

C S N I M O K F A B D H

haizzz , vì mới lớp 8 nên mình chỉ làm được đến câu c, thôi , bạn thông cảm

a, Xét tam giác ABC vuông tại A và HA = HD

- Có \(\widehat{BAC}\)là góc nội tiếp đường tròn O chắn cung BC

- Mà BC là đường kính O

=> \(\widehat{BAC}=90^o\)

=> \(\Delta ABC\perp A\)

Xét \(\Delta OAD\)cân tại O ( Vì OA = OD do A , D cung thuộc O )

- Có AH là đường cao

=> OH là đường trung tuyến \(\Delta OAD\)

=> H là trug điểm AD

=> HA = HD

b, MN // SC , SC tiếp tuyến của (O)

Xét tam giác OSC có : M là trung điểm của OC

                                     N là trung điểm của OS

=> MN là đường TB của \(\Delta OSC\)

=> MN // SC

Mà \(MN\perp OC\left(gt\right)\)

\(\Rightarrow OC\perp SC\)tại S

- Xét đường tròn O có CO là bán kính ( vì \(C\in\left(O\right)\)

\(CO\perp SC\)tại C
=> SC là tiếp tuyến của đường tròn (O)

c, BH .  HC = AF . AK

Xét \(\Delta ABC\perp A\)có :

AH là đường cao 

=> AH2 = BH . HC

Xét đường tròn đường kính AH có F thuộc đường tròn

\(\Rightarrow\widehat{AFH}=90^o\)

\(\Rightarrow HF\perp AK\)tại F

Xét tam giác AHK vuông tại H , ta có : 

HF là đường cao 

=> AH2 = AF . AK

=> BH . HC = AF . AK ( = AH2 )

19 tháng 4 2020

GARENA FREE FIRE