K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2020

Gọi M, N lần lượt là trung điểm của AB, CD.

Ta có: \(P=AB+CD=2AM+2CN=2\sqrt{R^2-OM^2}+2\sqrt{R^2-ON^2}\).

Ta dễ dàng chứng minh được \(OM^2+ON^2=OI^2\).

Do đó: \(P=2\left(\sqrt{R^2-OM^2}+\sqrt{R^2-ON^2}\right)\le2\sqrt{2\left(R^2-OM^2+R^2-ON^2\right)}=2\sqrt{2\left(2R^2-OI^2\right)}\).

Đẳng thức xảy ra khi và chỉ khi \(OM=ON\), tức AB tạo với OI một góc 

30 tháng 12 2020

Dạ em cảm ơn ạ

 

11 tháng 4 2020

*Mình vẽ hình trên GeoGebra nên bạn vào thống kê mình xem*

Xét \(\Delta IDC\) và \(\Delta\)IAB có:

\(\widehat{DIC}=\widehat{AIB}\) (đối đỉnh)

\(\widehat{IDC}=\widehat{IAB}\) (cùng chắn cung BC)

Do đó \(\Delta IDC\)đồng dạng với \(\Delta\)IAB => \(\frac{ID}{IA}=\frac{IC}{IB}=\frac{CD}{AB}\left(1\right)\)

Tương tự ta có: \(\Delta\)IAD đồng dạng \(\Delta\)IBC => \(\frac{IA}{IB}=\frac{ID}{IC}=\frac{DA}{BC}\left(2\right)\)

Từ (1) và (2) ta có: \(\frac{ID}{IB}=\frac{ID}{IA}\cdot\frac{IA}{IB}=\frac{DA\cdot CD}{AB\cdot BC}\)

\(\Rightarrow\frac{ID+IB}{IB}=\frac{AB\cdot BC+DA\cdot CD}{AB\cdot BC}\) hay \(BD=\frac{AB\cdot BC+DA\cdot CD}{AB\cdot BC}\cdot IB\)

mặt khác  ta có: \(\frac{IC}{IA}=\frac{IC}{IB}:\frac{IA}{IB}=\frac{BC\cdot CD}{AB\cdot DA}\Rightarrow\frac{IC+IA}{IA}=\frac{AB\cdot DA+BC\cdot CD}{AB\cdot DA}\)

\(\Rightarrow AC=\frac{AB\cdot DA+BC\cdot CD}{AB\cdot DA}\cdot IA\)

Do đó: \(\frac{AC}{BD}=\left(\frac{AB\cdot DA+BC\cdot CD}{AB\cdot DA}\cdot IA\right):\left(\frac{AB\cdot BC+DA\cdot CB}{AB\cdot BC}\cdot IB\right)\Rightarrow\frac{AC}{BD}=\frac{AB\cdot DA+BC\cdot CD}{AB\cdot BC+DA\cdot CD}\)

Do đó:

\(\frac{AB\cdot DA+BC\cdot CD}{AB\cdot BC+DA\cdot CD}\left(max\right)\Leftrightarrow\hept{\begin{cases}AC\left(max\right)\\BD\left(min\right)\end{cases}}\)<=> AC qua O và BD _|_ OI

\(\frac{AB\cdot DA+BC\cdot CD}{AB\cdot BC+DA\cdot CD}\left(min\right)\Leftrightarrow\hept{\begin{cases}AC\left(min\right)\\BD\left(max\right)\end{cases}}\)<=> AC _|_OI vfa BD đi qua O

3 tháng 9 2021

a CD <AB,b IE=OE-OI=OF-OI<OF-OH=HF

3 tháng 9 2021

a) CD<AB,b)IE=OE-OI=OF-OI<OF-OH=HF

 

 

8 tháng 5 2020

c) Theo câu b) ta có: ACF = AEC = > AC là tiếp tuyến của đường tròn ngoại tiếp của tam giác CEF (1)

Mặt khác, ta có: ACB = 90(góc nội tiếp chứa đường tròn)

⇒AC⊥CB(2) 

Từ (1) và (2) => CB chứa đường kính của đường tròn ngoại tiếp tam giác CEF, mà CB cố định nên tâm của đường tròn ngoại tiếp tam giác CEF thuộc CB cố định E thay đổi trên cung nhỏ BC.

k mk nha

10 tháng 5 2020

ko biết