Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA⊥BC
Hình vẽ:
a, \(\left\{{}\begin{matrix}OB=OC\\AB=AC\end{matrix}\right.\Rightarrow OA\) là đường trung trực của \(BC\)
b, Vì \(OA\) là đường trung trực của \(BC\Rightarrow\left\{{}\begin{matrix}OA\perp BC\\HB=HC\end{matrix}\right.\)
\(\Delta OBA\) vuông tại \(B,BH\perp OA\Rightarrow HA.HO=HB^2=HB.HC\)
c, \(\widehat{ABI}=\dfrac{1}{2}\widehat{AOB}\) (Góc tạo bởi tia tiếp tuyến và dây cung)
Lại có \(\widehat{CBI}=\dfrac{1}{2}\widehat{COI}==\dfrac{1}{2}\widehat{BOI}\)
\(\Rightarrow\widehat{ABI}=\widehat{CBI}\Rightarrow BI\) là phân giác \(\widehat{ABC}\)
Mà \(AI\) là phân giác \(\widehat{BAC}\)
\(\Rightarrow I\) là tâm đường tròn nội tiếp
a: góc OBA+góc OCA=90+90=180 độ
=>ABOC nội tiếp
b: Xét(O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>M nằm trên đường trung trực của BC
mà M thuộc (O)
nên M là điểm chính giữa của cung CB
góc ABM+góc OBM=90 độ
góc CBM+góc OMB=90 độ
mà góc OBM=góc OMB
nên góc ABM=góc CBM
=>BM là phân giác của góc ABC
a) Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)
Ta có: AB=AC(cmt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OB=OC(=R)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA⊥BC(đpcm)
b) Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: OA là tia phân giác của \(\widehat{BOC}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{BOA}=\widehat{COA}\)(3)
Ta có: ΔOCA vuông tại C(CA là tiếp tuyến của (O) có C là tiếp điểm)
nên \(\widehat{CAO}+\widehat{COA}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{EAO}+\widehat{COA}=90^0\)(4)
Từ (3) và (4) suy ra \(\widehat{EAO}+\widehat{BOA}=90^0\)(5)
Vì tia OA nằm giữa hai tia OE và OB
nên \(\widehat{BOA}+\widehat{EOA}=\widehat{BOE}\)
hay \(\widehat{EOA}+\widehat{BOA}=90^0\)(6)
Từ (5) và (6) suy ra \(\widehat{EAO}=\widehat{EOA}\)
Xét ΔOAE có \(\widehat{EAO}=\widehat{EOA}\)(cmt)
nên ΔOAE cân tại E(Định lí đảo của tam giác cân)
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
b: Xét ΔOBA vuông tại B có BH làđường cao
nên OH*OA=OB^2=R^2