K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

Chứng minh được ∆BOC và ∆BOD là tam giác đều nên suy ra được sđ cung nhỏ C D ⏜ = 120 0 và sđ cung lớn C D ⏜ = 240 0

15 tháng 1 2021

Câu 1 : 

Xét ΔCHO vuông tại H , có : cos COH = \(\dfrac{OH}{OC }\)( tỉ số lượng giác ) 

⇔ cos COH = \(\dfrac{R/2}{R}\)=\(\dfrac{1}{2}\)=> \(\widehat{COH }\) = 60 độ 

=> \(\widehat{BC }\) = \(\widehat{COH }\) = 60 độ 

C/m tương tự =>​ \(​​​​\widehat{BD }\) = 60 độ . Ta có \(\widehat{BC }\) + \(​​​​\widehat{BD }\)  = 60 + 60 = 120 độ 

còn lại bạn tự làm nốt nhá 

  
1 tháng 9 2019

a, Chú ý:  K M B ^ = 90 0 và K E B ^ = 90 0 => ĐPCM

b, ∆ABE:∆AKM (g.g)

=>  A E A M = A B A K

=> AE.AK = AB.AM = 3 R 2  không đổi

c, ∆OBC đều 

=>  B O C ⏜ = 60 0 => S =  πR 2 6

26 tháng 2 2022

tham khảo:

undefined

29 tháng 3 2016
a)

góc BEA= 90 ( nội tiếp chắn nửa....), KMB=90 độ (gt). 

Tứ giác MEBK có 2 góc 2 và M bằng nhau, kề nhau cùng nhìn cạnh KB nên có đpcm

btam giác KAM đồng dạng BAE ( g.g) ==> AK.AE= AM.AB= 2R. 3R/2= 3R2
c

 tam giác OBC đều ( OB=OC=BC ) có BOC =60 độ.    

S quạt tròn OBC= π. R2. 60/360 

24 tháng 8 2023

giúp mik với =(((

a: ΔOCD cân tại O

mà OH là đường trung tuyến

nên OH vuông góc CD

=>OH vuông góc với HM

=>H nằm trên đường tròn đường kính OM

b: \(CH=HD=\dfrac{CD}{2}=\dfrac{R\sqrt{3}}{2}\)

ΔOHD vuông tại H

=>OH^2+HD^2=OD^2

=>\(OH^2+R^2\cdot\dfrac{3}{4}=R^2\)

=>\(OH^2=\dfrac{1}{4}R^2\)

=>OH=R/2

Xét ΔCOD có \(cosCOD=\dfrac{OC^2+OD^2-CD^2}{2\cdot OC\cdot OD}=\dfrac{R^2+R^2-3R^2}{2\cdot R\cdot R}=\dfrac{-1}{2}\)

=>góc COD=120 độ

 

a) Xét ΔOAB có OA=OB=AB(=R)

nên ΔOAB đều(Dấu hiệu nhận biết tam giác đều)

\(\Leftrightarrow\widehat{AOB}=60^0\)

hay \(sđ\stackrel\frown{AB}=60^0\)