K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có tam giác MON cân tại O

Mà  ∠ OMN =  45 °  suy ra, tam giác OMN vuông cân tại O

OH là đường cao của tam giác MON

Suy ra, OH là đường trung tuyến của tam giác MON

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Đáp án: A

AH
Akai Haruma
Giáo viên
7 tháng 1 2022

Lời giải:
** Dây AB trong bài không có tác dụng gì.

Vì $OC=OD=R$ nên tam giác $OCD$ cân tại $O$. Do đó đường cao $OH$ đồng thời là đường trung tuyến 

$\Rightarrow CD=2HC$

Áp dụng định lý Pitago cho tam giác $HOC$:
$HC=\sqrt{OC^2-OH^2}=\sqrt{10^2-4^2}=2\sqrt{21}$ (cm)

$\Rightarrow CD=2HC=4\sqrt{21}$ (cm)

Không có đáp án nào đúng.

23 tháng 12 2021

Chọn C

23 tháng 12 2021

C

23 tháng 3 2020

Đáp án: B. 8cm

Lời giải:

Gọi dây trên là dây AB. Hạ OH\(\perp\)AB = {H} (cd)

Xét (O) 1 phần đường kính OH: OH\(\perp\)AB = {H} (cd)
=> H là trung điểm AB (đl) => HA = HB = AB: 2 = 12:2 = 6 (cm)

 OH\(\perp\)AB = {H} (cd) => \(\Delta\)OHB vuông tại H (đn)
=> OH\(^2\)+ HB\(^2\)= OB\(^2\)(Đl Py-ta-go)
T/s:  OH\(^2\)+ 6\(^{^2}\)= R\(^2\)
<=> OH\(^2\)+36 = 10\(^2\)=100
<=> OH\(^2\)= 64 => OH = 8 (cm)

\(^2\)

21 tháng 12 2023

Câu 1:

Xét ΔABC vuông tại A có

\(tanB=\dfrac{AC}{AB}\)

=>\(\dfrac{AC}{6}=\dfrac{4}{3}\)

=>\(AC=\dfrac{4}{3}\cdot6=8\left(cm\right)\)

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Câu 4:

a: Thay x=2 và y=5 vào y=(2m-1)x+3, ta được:

2(2m-1)+3=5

=>2(2m-1)=2

=>2m-1=1

=>2m=2

=>\(m=\dfrac{2}{2}=1\)

b: Khi m=1 thì \(y=\left(2\cdot1-1\right)x+3=x+3\)

loading...

 

12 tháng 1 2022

B

12 tháng 1 2022

B