cho đường tròn (O) đường kính BC, lấy điểm A thuộc đường tròn (O) (A khác B,C). Tr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Sửa đề: Gọi I là giao điểm của OD và BE

Xét (O) có

DB,DE là tiếp tuyến

Do đó: DB=DE

=>D nằm trên đường trung trực của BE(1)

Ta có: OB=OE

nên O nằm trên đường trung trực của BE(2)

Từ (1) và (2) suy ra OD là đường trung trực của BE

=>OD\(\perp\)BE tại trung điểm của BE

=>OD\(\perp\)BE tại I và I là trung điểm của BE

Xét ΔDBO vuông tại B có BI là đường cao

nên \(DI\cdot DO=DB^2\left(3\right)\)

Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

=>BA\(\perp\)AC tại A

=>BA\(\perp\)DC tại A

Xét ΔDBC vuông tại B có BA là đường cao

nên \(DA\cdot DC=DB^2\left(4\right)\)

Từ (3) và (4) suy ra \(DA\cdot DC=DI\cdot DO\)

b: Gọi giao điểm của CE với BD là M

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>BE\(\perp\)EC tại E

=>BE\(\perp\)MC tại E

=>ΔBEM vuông tại E

=>\(\widehat{BEM}=90^0\)

Xét ΔDBE có DB=DE

nên ΔDBE cân tại D

=>\(\widehat{DBE}=\widehat{DEB}\)

Ta có: \(\widehat{DBE}+\widehat{DME}=90^0\)(ΔMEB vuông tại E)

\(\widehat{DEB}+\widehat{DEM}=\widehat{MEB}=90^0\)

mà \(\widehat{DBE}=\widehat{DEB}\)

nên \(\widehat{DME}=\widehat{DEM}\)

=>ΔDEM cân tại D

=>DE=DM

mà DE=DB

nên DB=DM(5)

Ta có: EH\(\perp\)BC

MB\(\perp\)BC

Do đó: EH//BM

Xét ΔCDB có GH//DB

nên \(\dfrac{GH}{DB}=\dfrac{CG}{CD}\left(6\right)\)

Xét ΔCMD có EG//MD

nên \(\dfrac{EG}{MD}=\dfrac{CG}{CD}\left(7\right)\)

Từ (5),(6),(7) suy ra \(\dfrac{GH}{DB}=\dfrac{EG}{MD}\)

mà DB=MD

nên GH=EG

=>G là trung điểm của EH

Xét ΔEHB có

I,G lần lượt là trung điểm của EB,EH

=>IG là đường trung bình của ΔEHB

=>IG//HB

mà H\(\in\)BC

nên IG//BC

6 tháng 12 2017

Câu c,

+ Gọi K là trung điểm của BH

+ Chứng minh IK vuông góc với BM

+ K là trực tâm tam giác BMI

+ Chứng minh KM// EI

+ Chứng minh M là trung điểm của BE (t/c đường trung bình)

3 tháng 2 2017

Gọi giao điểm của OM với đường tròn (O;R) là I

\(\Delta\)AMO vuông tại A có AI là đường trung tuyến ứng với cạnh huyền OM nên AI=\(\frac{1}{2}\)OM mà OM=2R nên AI=R.

\(\Delta\)OAI có OA=OI=AI(=R) nên \(\Delta\)OAI đều nên góc AOM=60 độ

Vì tiếp tuyến tại A và B của (O;R) cắt nhau tại M nên áp dụng tính chất 2 đường tiếp tuyến cắt nhau thì OM là tia phân giác của góc OAB hay góc AOM bằng một nửa góc AOB hay góc AOB bằng 2.60=120 độ